The ‘Analyzátor a syntezátor zvuku’ or ‘ASYZ’ Bohumil Matoušek, Antonín ka[…] & Pavel Pitrák, Czech Republic, 1971

The ASYZ 2.0 'Analyzátor a syntezátor zvuku' at the Barrandov Film Studio 1971
The ASYZ 2.0 ‘Analyzátor a syntezátor zvuku’ at the Barrandov Film Studio 1971

The ASYZ was built in the late 1960s at the ‘East European Hollywood’ Barrandov Film Studios in Prague to provide sound effects and electronic music for film productions, with the final version, the ASYZ2 completed in 1971. The instrument was designed by electronic engineers, Antonín ka [name incomplete], Bohumil Matoušek and later by the sound engineer and designer Pavel Pitrák who maintained the instrument throughout the seventies and eighties. The ASYZ remained in use until the 1990s and is now housed at the collection of the Cinepost post production company, Praha.

The original design was a keyboard-less modular type device intended to be used for processing external audio signals and for generating sound effects, the modules being connected using colour coded patch cables. The instrument was controlled by manually switching a rotary dial to select different timbres and pitches or by programming a 16 step three track sequencer, a six octave keyboard was added in the 1990s. The modules of the ASYZ included a Voltage Controlled Oscillator, white noise generator, low and high pass filters, a parametric equaliser, ring modulator, phaser, signal mixer, VCA, ADSR envelope shaper, LFO, random signal generators, envelope followers and auxiliary circuits. The output of the instrument was controlled by a small six-channel mixing console and monitored using a built-in oscilloscope.


Sources:

Milan Guštar. ‘Elektrofony II’

http://czechkeys.blog.cz/

EMS Synthesisers, Peter Zinovieff, Tristram Cary, David Cockerell United Kingdom, 1969

EMS (Electronic Music Studios) was founded in 1965 by Peter Zinovieff, the son of an aristocrat Russian émigré with a passion for electronic music who set up the studio in the back garden of his home in Putney, London. The EMS studio was the hub of activity for electronic music in the UK during the late sixties and seventies with composers such as Harrison Birtwistle, Tristram Cary, Karlheinz Stockhausen and Hans Werner Henze as well as the commercial electronic production group ‘Unit Delta Plus  (Zinovieff, Delia Derbyshire and Brian Hodgson).

Front panel of the DEC PDP8i
Front panel of the DEC PDP8i

Zinovieff , with David Cockerell and Peter Grogono developed a software program called MUSYS (which evolved into the current MOUSE audio synthesis programming language) to run on two DEC PDP8 mini-computers allowing the voltage control of multiple analogue synthesis parameters via a digital punch-paper control.  In the mid 1960’s access outside the academic or military establishment to, not one but two, 12-bit computers with 1K memory and a video monitor for purely musical use was completely unheard of:

” I was lucky in those days to have a rich wife and so we sold her tiarra and we swapped it for a computer. And this was the first computer in the world in a private house.” – Peter Zinovieff

The specific focus of EMS was to work with digital audio analysis and manipulation or as Zinovieff puts it “ To be able to analyse a sound; put it into sensible musical form on a computer; to be able to manipulate that form and re-create it in a musical way” (Zinovieff 2007). Digital signal processing was way beyond the capabilities of the DEC PDP8’s; instead they were used to control a bank of 64 oscillators (actually resonant filters that could be used as sine wave generators) modified for digital control. MUSYS was therefore a hybrid digital-analogue performance controller similar to Max Mathew’s GROOVE System (1970) and  Gabura & Ciamaga’s PIPER system (1965).

Peter Zinovieff at the controls of the PDP8 Computer, EMS studio London
Peter Zinovieff at the controls of the PDP8 Computer, EMS studio London

ems_studio_diagram
EMS studio diagram (from Mark Vail’s ‘ Vintage Synthesizers’)

Even for the wealthy Peter Zinovieff, running EMS privately was phenomenally expensive and he soon found himself running into financial difficulties. The VCS range of synthesisers was launched In 1969 after Zinovieff received little interest when he offered to donate the Studio to the nation (in a letter to ‘The Times’ newspaper). It was decided that the only way EMS could be saved was to create a commercial, miniaturised version of the studio as a modular, affordable synthesiser for the education market. The first version of the synthesiser designed by David Cockerell, was an early prototype called the  Voltage Controlled Studio 1; a two oscillator instrument built into a wooden rack unit – built for the Australian composer Don Banks for £50 after a lengthy pub conversation:

“We made one little box for the Australian composer Don Banks, which we called the VCS1…and we made two of those…it was a thing the size of a shoebox with lots of knobs, oscillators, filter, not voltage controlled. Maybe a ring modulator, and envelope modulator” David Cockerell 2002

vcs-3_0001 The VCS1 was soon followed by a more commercially viable design; The Voltage Controlled Studio 3 (VCS3), with circuitry by David Cockerell, case design by Tistram Cary and with input from Zimovieff . This device was designed as a small, modular, portable but powerful and versatile electronic music studio – rather than electronic instrument – and as such initially came without a standard keyboard attached. The price of the instrument was kept as low as possible – about £330 (1971) – by using cheap army surplus electronic components:

“A lot of the design was dictated by really silly things like what surplus stuff I could buy in Lisle Street [Army-surplus junk shops in Lisle Street, Soho,London]…For instance, those slow motion dials for the oscillator, that was bought on Lisle street, in fact nearly all the components were bought on Lisle street…being an impoverished amateur, I was always conscious of making things cheap. I saw the way Moog did it [referring to Moog’s ladder filter] but I adapted that and changed that…he had a ladder based on ground-base transistors and I changed it to using simple diodes…to make it cheaper. transistors were twenty pence and diodes were tuppence!” David Cockerell from ‘Analog Days’

Despite this low budget approach, the success of the VCS3 was due to it’s portability and flexibility. This was the first affordable modular synthesiser that could easily be carried around and used live as a performance instrument. As well as an electronic instrument in it’s own right, the VCS3 could also be used as an effects generator and a signal processor, allowing musicians to manipulate external sounds such as guitars and voice.

VCS3 with DK1 keyboard
VCS3 with DK1 keyboard

The VCS3 was equipped with two audio oscillators of varying frequency, producing sine and sawtooth and square waveforms which could be coloured and shaped by filters, a ring modulator, a low frequency oscillator, a noise generator,  a spring reverb and envelope generators. The device could be controlled by two unique components whose design was dictated by what could be found in Lisle street junk shops; a large two dimensional joystick (from a remote control aircraft kit) and a 16 by 16 pin board allowing the user to patch all the modules without the clutter of patch cables.

The iconic 16 X 16 pin-patch panel of the VCS3
The iconic 16 X 16 pin-patch panel of the VCS3. The 2700 ohm resistors soldered inside the pin vary in tolerance 5% variance and later 1%; the pins have different colours: the ‘red’ pins have 1% tolerance and the ‘white’ have 5% while the ‘green’ pins are attenuating pins having a resistance of 68,000 ohms giving differing results when constructing a patch.

The original design intended as a music box for electronic music composition – in the same vein as Buchla’s Electronic Music Box – was quickly modified with the addition of a standard keyboard that allowed tempered pitch control over the monophonic VCS3. This brought the VCS3 to the attention of rock and pop musicians who either couldn’t afford the huge modular Moog systems (the VCS3 appeared a year before the Minimoog was launched in the USA) or couldn’t find Moog, ARP or Buchla instruments on the British market. Despite it’s reputation as being hopeless as a melodic instrument due to it’s oscillators inherent instability the VCS3 was enthusiastically championed by many british rock acts of the era; Pink Floyd, Brian Eno (who made the external audio processing ability of the instruments part of his signature sound in the early 70’s), Robert Fripp, Hawkwind (the eponymous ‘Silver Machine‘), The Who, Gong and Jean Michel Jarre amongst many others. The VCS3 was used as the basis for a number of other instrument designs by EMS including an ultra-portable A/AK/AKS (1972) ; a VCS3 housed in a plastic carrying case with a built-in analogue sequencer, the Synthi HiFli guitar synthesiser (1973), EMS Spectron Video Synthesiser, Synthi E (a cut-down VCS3 for educational purposes) and AMS Polysynthi as well as several sequencer and vocoder units and the large modular EMS Synthi 100 (1971).

Despite initial success – at one point Robert Moog offered a struggling Moog Music to EMS for $100,000 – The EMS company succumbed to competition from large established international instrument manufacturers who brought out cheaper, more commercial, stable and simpler electronic instruments; the trend in synthesisers has moved away from modular user-patched instruments to simpler, preset performance keyboards. EMS finally closed in 1979 after a long period of decline. The EMS name was sold to Datanomics in Dorset UK and more recently a previous employee Robin Wood, acquired the rights to the EMS name in 1997 and restarted small scale production of the EMS range to the original specifications.

Peter Zinovieff.  Currently working as a librettist and composer of electronic music in Scotland.

David Cockerell, chief designer of the VCS and Synthi range of instruments left EMS in 1972 to join Electro-Harmonix and designed most of their effect pedals. He went to IRCAM, Paris in 1976 for six months, and then returned to Electro-Harmonix . Cockerell  designed the entire Akai sampler range to date, some in collaboration with Chris Huggett (the Wasp & OSCar designer) and Tim Orr.

Tristram Cary , Director of EMS until 1973. Left to become Professor of Electronic Music at the Royal College of Music and later Professor of Music at the University of Adelade. Now retired.

Peter Grogono Main software designer of MUSYS. Left EMS in 1973 but continued working on the MUSYS programming language and further developed it into the Mouse language. Currently Professor at the Department of Computer Science, Concordia University, Canada.

The Synthi 100 at IPEM Studios Netherlands.
The Synthi 100 at IPEM Studios Netherlands.

The EMS Synthi 100

The EMS Synthi 100 was a large and very expensive (£6,500 in 1971)  modular system, fewer than forty units were built and sold. The Synthi 100 was essentially  3 VCS3’s combined; delivering a total of 12 oscillators, two duophonic keyboards giving four note ‘polyphony’ plus a 3 track 256 step digital sequencer. The instrument also came with optional modules including a Vocoder 500 and an interface to connect to a visual interface via a PDP8 computer known as the ‘Computer Synthi’.  

Images of EMS Synthesisers


Documents:

VCS3 Manual (pdf)


Sources:

http://www.till.com/articles/arp/ ‘Analog Days’. T. J PINCH, Frank Trocco. Harvard University Press, 2004

‘Vintage Synthesizers’: Pioneering Designers, Groundbreaking Instruments, Collecting Tips, Mutants of Technology. Mark Vail. March 15th 2000. Backbeat Books

http://www.redbullmusicacademy.com/lectures/dr-peter-zinovieff-the-original-tectonic-sounds?template=RBMA_Lecture%2Ftranscript

http://users.encs.concordia.ca/~grogono

http://www.emssynthesisers.co.uk/

https://jasperpye.wordpress.com/category/synths

Peter Forrest, The A-Z of Analogue Synthesisers Part One A-M, Oct 1998.

The ‘Beauchamp Synthesiser’ or ‘Harmonic Tone Generator’ James Beauchamp, USA, 1964

Beauchamp Synthesiser or Harmonic Tone Generator at the Experimental Music Studio at the University of Illinois at Urbana-Champaign. USA
Beauchamp Synthesiser or Harmonic Tone Generator at the Experimental Music Studio at the University of Illinois at Urbana-Champaign. USA

James Beauchamp invented the Harmonic Tone Generator in 1964, one of the first additive electronic voltage-controlled synthesisers, under the direction of Lejaren Hiller at the Experimental Music Studio at the University of Illinois at Urbana-Champaign.

“The instrument synthesised six exact harmonics with variable fundamental frequency from 0 to 2000 Hz. The amplitudes of the six harmonics, the fundamental frequency, and the phase of the second harmonic were programmed by voltage control. The fundamental frequency (pitch) was controlled by an external keyboard or generators to provide vibrato and other effects. Control of amplitude was provided by special envelope generators or external generators or even by microphone or prerecorded sounds.

The harmonics were derived by generating pairs of ultrasonic frequencies which were nonlinearly mixed to produce audio difference frequencies. That is to say, one set of frequencies, 50 KHz, 100 KHz, …, 300 KHz, was fixed. Another set, 50-52 KHz, 100-104 KHz, …, 300-312 KHz, was variable. When 50 and 50-52 KHz, etc., was mixed, the sine tones 0-2 KHz, … was derived. Harmonics were generated by full-wave rectification (even harmonics) and square wave chopping (odd harmonics), followed by band pass filtering to separate the harmonics.

The envelope generators consisted of variable delays and attack/decay circuits. In response to a trigger signal from the keyboard, after a programmed delay, the envelope generator would either rise and then go into an immediate decay while the key is depressed or it would rise and decay after the key is depressed. Having the upper harmonics delayed with respect to the lower ones gave an interesting effect.

Because the amplitude controls were “bipolar” (i.e., either positive or negative controls were effective), the instrument could serve as a multi-frequency “ring modulator”, which was especially useful when the controls were derived from a voice or musical instrument. The frequency control was also bipolar and was capable of producing rich sound spectra when the control was taken from a sine generator operating at frequencies ranging from 20 Hz through several hundred Hz. This FM effect was very popular for producing sounds useful in electronic music compositions.”

James Beauchamp. http://ems.music.uiuc.edu/beaucham/htg.html

James Beauchamp working on the  Harmo
James Beauchamp working on the Harmonic Tone Generator c1964

Several electronic music compositions utilised the Harmonic Tone Generator as their main source of electronic sounds. Among them are:

Herbert Brun, “Futility, 1964”

Lejaren Hiller, “Machine Music” and “A Triptych for Hieronymus”

Salvatore Martirano, “Underworld”

Kenneth Gaburo, “Antiphonics III”, “Lemon Drops”, “Hydrogen Jukebox”, and “For Harry”


Sources:

http://ems.music.illinois.edu/ems/articles/battisti.html

Hiller, Lejaren, and James Beauchamps, .Research in Music with Electronics., Science, New Series, Vol. 150, No. 3693 (Oct. 8, 1965): 161-169.

http://ems.music.uiuc.edu/beaucham/index.html

http://ems.music.uiuc.edu/news/spring97/article-bohn.html

 

‘Moog Synthesisers’ Robert Moog. USA, 1964

Robert Moog started working with electronic instruments at the age of nineteen when, with his father, he created his first company,  R.A.Moog Co to manufacture and sell Theremin kits (called the ‘Melodia Theremin’ the same design as Leon Termen’s theremin but with an optional keyboard attachment) and guitar amplifiers from the basement of his family home in Queens, New York. Moog went on to study physics at Queens College, New York in 1957 and electrical engineering at Columbia University and a Ph.D. in engineering physics from Cornell University (1965). In 1961 Moog started to produce the first transistorised version of the Theremin – which up until then had been based on Vacuum tube technology.

In 1963 with a $200 research grant from Columbia University Moog Collaborated with the experimental musician Herbert Deutsch  on the the design of what was to become the first modular Moog Synthesiser.


Herb Deutsch discusses his role in the origin of the Moog Synthesiser.

Herbert A. Deutsch working on the Development of the Moog Synthesiser c 1963
Herbert A. Deutsch working on the Development of the Moog Synthesiser c 1963

Moog and Deutsch had already been absorbing and experimenting with ideas about transistorised modular synthesisers from the German designer Harald Bode (as well as collaborating with Raymond Scott on instrument design at Manhattan Research Inc). In September 1964 he was invited to exhibit his circuits at the Audio Engineering Society Convention. Shortly afterwards in 1964,  Moog begin to manufacture electronic music synthesisers.

“…At the time I was actually still thinking primarily as a composer and at first we were probably more interested in the potential expansion of the musical aural universe than we were of its effect upon the broader musical community. In fact when Bob questioned me on whether the instrument should have a regular keyboard (Vladimir Ussachevsky had suggested to him that it should not) I told Bob “I think a keyboard is a good idea, after all, having a piano did not stop Schoenberg from developing twelve-tone music and putting a keyboard on the synthesizer would certainly make it a more sale-able product!!”
Herbert Deutsch 2004

Early version of the Moog Modular, 1964
Early version of the Moog Modular, 1964

The first instrument the Moog Modular Synthesiser produced in 1964 became the first widely used electronic music synthesiser and the first instrument to make the crossover from the avant-garde to popular music. The release in 1968 of Wendy Carlos’s album “Switched on Bach” which was entirely recorded using Moog synthesisers (and one of the highest-selling classical music recordings of its era), brought the Moog to public attention and changed conceptions about electronic music and synthesisers in general. The Beatles bought one, as did Mick Jagger who bought a hugely expensive modular Moog in 1967 (which was only used once, as a prop on Nicolas Roeg’s  film ‘Performance’  and was later sold to the German experimentalist rock group, Tangerine Dream). Over the next decade Moog created numerous keyboard synthesisers, Modular components (many licensed from design by Harald Bode), Vocoder (another Bode design), Bass pedals, Guitar synthesisers and so-on.

Early Moog Modular from 1964 at the interactive Music Museum, Ghent, Belgium.
Early Moog Modular from 1964 at the interactive Music Museum, Ghent, Belgium.

Moog’s designs set a standard for future commercial electronic musical instruments with innovations such as the 1 volt per octave CV control that became an industry standard and pulse triggering signals for connecting and synchronising multiple components and modules.

Despite this innovation, the Moog Synthesiser Company did not survive the decade, larger companies such as Arp and Roland developed Moog’s prototypes into more sophisticated and cost effective instruments. Moog sold the company to Norlin in the 1970’s whose miss-management lead to Moog’s resignation. Moog Music finally closed down in 1993. Robert Moog re-acquired the rights to the Moog company name in 2002 and once again began to produce updated versions of the Moog Synthesiser range. Robert Moog died in 2003.

Moog Production Instruments 1963-2013
Date Model
1963–1980 Moog modular synthesiser
1970–81 Minimoog
1974–79 Moog Satellite
1974–79 Moog Sonic Six
1975–76 Minitmoog
1975–79 Micromoog
1975–80 Polymoog
1976–83 Moog Taurus bass pedal
1978–81 Multimoog
1979–84 Moog Prodigy
1980 Moog Liberation
1980 Moog Opus-3
1981 Moog Concertmate MG-1
1981 Moog Rogue
1981 Moog Source
1982-1985 Memorymoog
Moog Company relaunch
1998–present Moogerfooger
2002–present Minimoog Voyager
2006–present Moog Little Phatty
2010 Slim Phatty
2011 Taurus 3 bass pedal
2012 Minitaur
2013 Sub Phatty

 

The Mini Moog Synthesiser with Herb Deutsch

Images of Moog Music Synthesisers


Sources

http://www.moogmusic.com/

http://moogarchives.com/

Bob Moog Foundation

INTERVIEW WITH HERBERT A. DEUTSCH. October 2003, and February 2004

Analog Days: The Invention and Impact of the Moog Synthesizer.  Trevor Pinch, Frank Trocco. Harvard University Press, 2004