‘Sound-Producing Device’ Melvin Linwood Severy, USA. 1912

 

sever_diagram

Melvin L. Severy was an American engineer and inventor from Arlington Heights, Massachusetts – probably best known as the inventor of the Choralcelo; a huge hybrid electronic and electro-mechanical organ. Severy was also responsible for numerous patents on inventions as diverse as typewriters (1903), bottling machines (1882), piano-tuning devices (1912), telegraphic systems, steam boilers (1893), steam engines (1894), cameras (1907), orthopaedic shoes, thermo-chemical batteries (1899), solar panels for generating electricity (1894), an iron-lung (1916) and what is probably the first sampling instrument, the ‘Sound Producing Device’ of 1912.

“The object of the present invention is the construction of an improved musical instrument in which the sonorous vibrations are produced electromagnetically by the movement of phonograms of magnetic material past electromagnetic sound producing mechanism.”

Diagram showing the key-action that moves the magnetic pick-up closer to the sound wheel.
Diagram showing the key-action that moves the magnetic pick-up closer to the sound wheel.

It is unknown weather the ‘Sound-Producing Device’  was actually built – Severy didn’t use any similar mechanisms in the Choralcelo – yet the ‘Sound-Producing Device’ predicted the future of sampling instruments such as the Chamberlin and Mellotron by half a century and perhaps invented the concept of sampling.

 

severy_synthetic_harmonogram_02

Severy’s device was based around the concept of printing numerous magnetic spectrogram or recorded sounds as endless loops on rotating wheels. A magnetic pick-up would be placed near the spectrogram disk and in turn, transmit a variable magnetic pulse that would active a speaker membrane – or, in a manner similar to Cahill’s Telharmonium, transmit the signal through the newly established telephone network.

Melvin Severy

The instrument was to have numerous spectrogram for each note representing the various fundamentals and timbres of the recorded sound – a concept that was new for the time and most likely inspired by H. Helmholtz’sOn the Sensations of Tone as a Physiological Basis for the Theory of Music‘ (first published in English in 1875). These different timbres could be mixed using organ-style stops. Variation in pitch was achieved simply by altering the speed of the disc for each note and the volume of each note by keyboard pressure which moved the pick-up nearer to the sonogram disc.

Each note of the instrument had it’s own speaker making the ‘Sound-Producing Device’ fully polyphonic as well as velocity sensitive.

Severy suggested several possible formats for encoded spectrograms including a (fig 11) paper-roll strips for long recordings, (fig 14, 14) disks with multiple pick-ups and an Edison type tube (fig 13):

“There are many ways in which the timbre forms may be made, such as stamping them from thin sheet metal; printing them on the cylinder with a magnetic ink; printing them with a sticky ink and then dusting the impression with iron filings or other magnetic particles; by electroplating, or by using a coating of paste impregnated with magnetic filings and various other methods, as will be obvious. The main idea is to secure a uniform layer of magnetic material whose lateral extent varies according to the variations of the sound waves to be produced.”

Melvin Severy. U.S. Patent notes. US1218324 A.2 March 1913

Severy had already, In 1910,  patented an automatic spectrogram or ‘Harmonograms’ recorder that mechanical wrote a sound recording to a rotating disc that would allow the recording and production of spectrograms for his instrument:

Severy explained how the instrument could be used to record and playback any sound:

“It is evident that by having some fine singer deliver into a phonautograph one or more complete octaves of musical notes, singing the broad A, for instance, and then having these phonautographs reproduced into timbre forms the instrument can be adapted for the repetition of the tones of the human voice. It is only necessary to secure a phonautograph of a single octave of the original notes for the reason that the other tones required are the mere variable speed of the first.”

Melvin Severy U.S. Patent notes. US1218324 A.2 March 1913

Melvin Linwood Severy. Biographical Notes.

Melvin Linwood Severy; born August 5, 1863 Melrose, Mass; died. Los Angeles, California 1951.

Severy was educated at Walpole, Mass. high school, Boston; grad school and  Monroe Coll. of Oratory. Severy worked as a florist and as a teacher teaching elocution and oratory and as an actor (where he acted with Edwin Booth, brother of the assassin of  Abraham Lincoln) Severy began his lengthy and succesful career as an inventor in 1882 and eventually held over 80 patents including the Severy Printing Process (which won him  John Scott medal of Franklin Institute in 1898), the Choralcelo, Vocalcelo and Vocalsevro (later name for the Choralcelo), fluid transmission for cars, telegraphic devices, engines, Health devices, typewriters and so-on.

Severy founded numerous businesses from his own inventions including the Ex-pres Severy Impression Process Co., Choralcelo Mfg. Co., Choralcelo Co., dir. Solar Power Co., and the Automatic Tympan Co.

As well as inventing, Severy found time to write books of fiction and non fiction including: ‘Fleur-de-lis and Other Stories’, ‘Materialization and Other Spiritual Phenomena from a Scientific Standpoint’ (1897), ‘The Darrow Enigma’( 1904), ‘ ‘The Mystery of June Thirteenth’ (1905), ‘Maitland’s Master Mystery’ and ‘Gillette’s Social Redemption (1907), ‘Gillette’s Industrial Solution’ (1903) both commissioned by King Gillette the inventor of the safety razor.

In  ‘The Darrow Enigma’( 1904) Severy acurately predicts the use of light beams (lasers) as a surveillance method:

“The device whereby I secure this at such a distance is an invention of my own which, for patent reasons–I might almost say ‘patent patent reasons’–I will ask you to kindly keep to yourself. To the diaphragm there I fasten this bit of burnished silver. Upon this I concentrate a pencil of light which, when reflected, acts photographically upon a sensitised moving tape in this little box, and perfectly registers the minutest movement of the receiving diaphragm. How I develop, etch, and reproduce this record, and transform it into a record of the ordinary type, you will see in due time–and will kindly keep secret for the present.”


 

Sources

US Patent Office.  Melvin L Severy US1218324 A. Publication date 6 Mar 1917

Solar Energy Index: The Arizona State University Solar Energy Collection. By George Machovec. Pergamon Press 1980, p844.

Leave a Reply

Your email address will not be published. Required fields are marked *