The ‘Mixturtrautonium’ Oskar Sala, Germany, 1936

Oskar Sala's mixturtrautonium
Oskar Sala’s mixturtrautonium

Later developments of Freidrich Trautwein’s original  Trautonium were continued by the Trautonium virtuoso and composer Oskar Sala. In 1936, Sala christened his first instrument the ‘Rundfunktrautonium’ (‘Radio-Trautonium’) and also developed a concert version, the “Konzerttrautonium”. After the end of the Second World War the instrument was re-named the ‘Mixturtrautonium’ but all were essentially developments of the original subtractive synthesis principles of the Trautonium.

Mixturtrautonium at the Vienna Technology Museum
Mixturtrautonium at the Vienna Technology Museum, showing two resistant-string manuals and double foot pedals

The essential design principles of the Trautonium were retained by Sala; sound production on the basis of sub-harmonic ‘mixture’, and the method of playing with two string manuals. The latter are made of wire-covered catgut strings which act as variable resistors. according to the position at which they are pressed againts the contact rail beneath them, they control the frequencies of the electronic sound generators. when the finger glides over the string a continuous glissando results over the entire tonal region which has just been tuned up. Micro-tonal intervals could be produced on the Mixturtrautonium. To ensure accurate contact with the notes leather covered sprung and moveable metal tongues are added to each string.  Unlike with a vibrating string, the gradation of the electrical-resistant string manual is linear and not exponential so that all octave have the same finger range.

Sala at the
Sala at the Mixturtrautonium

The 1948 post-war Mixturtrautonium was a polyphonic version of the original Trautonium, generating sound from two AEG Thoraton tubes with a 3 ½ octave range (which could be extended with an octave switch). The instrument could also be controlled with a foot pedal that not only allowed variation in volume but also with a lateral foot movement, select three different sets of sub-harmonics. The Sub-harmonic ‘mixture’ technique basically used un-natural low frequency harmonics to modulate a sawtooth signal creating complex harmonic ‘mixtures’ which could be further coloured with noise generators, mixers, an envelope controller and a frequency shifter.

mixturtrautonium2
Mixturtrautonium

During the pre-war period, the ”Rundfunktrautonium’ was used extensively for film and radio broadcasts and after Paul Hindemith’s endorsement, became the instrument of choice for ‘serious’ electronic music composition (Hindemith’s switching of allegiances from Jörg Mager’s Sphärophon family of instruments to the Trautonium signalled the end  of Mager’s career in instrument design). A portable version, the ‘Konzerttrautonium’ was designed in 1936 specifically for the composer  Harald Genzmer’s ” Conzert für Trautonium und Orchestrer” and saw more than fifty performances before the outbreak of the war.

Berlin had in the early Thirties become the world capital of electronic music, with inventors and designers such as Jörg Mager , Oskar Vierling , Fritz Sennheiser , Bruno Helberger, Harald Bode, Friedrich Trautwein and Oskar Sala (with much of the work centred around the Heinrich-Hertz-Institute). These instruments often explored radical new approaches to tonality and expression and were enthusiastically adopted by the avant-garde of the period. This period of musical ferment coincided with the seizure of power by Adolf Hitler’s National Socialist party (NDSAP), who initially tried to absorb this strain of modernism for their own propaganda ends – indeed, the name ‘Volkstrautonium’ echoes the name ‘Volkswagen’ as a peoples instrument for a modern, new Germany. On the 18th August 1933, Joseph Goebbels (Hitler’s Propaganda Minister) presided over the IFA ‘Internationale Funkausstellung’ (International Radio Exhibition) in Berlin. The music for the exhibition was provided by the ‘Future Orchestra’ (Das Orchester der Zukunft) composed of the most advanced electronic instruments of the time: The Volkstrautonium played by Oskar Sala, Bruno Helberger’s Hellertion, Oskar Vierling’s Elektrochord , the Neo-Bechstein of Walther Nernst, a collection of electric violins and cellos and Leon Termen’s  Theremin.

'Das Orchester der Zukunft' at the Berlin IFA 1933
‘Das Orchester der Zukunft’ at the Berlin IFA 1933

The rise of the Hitler’s National Socialist party presented electronic and avant-garde musicians with a difficult choice; either the hope that by collaborating they would survive and be left alone and be able to continue working or, simply, leave the country. Trautwein, who had joined the NDSAP in the late thirties used his connections:

Luckily Trautwein knew a general who was on our side and arranged that we could play the instrument to the minister of propaganda Joseph Goebels, Hitler’s right hand man. I Played something by Paganini and of course he liked it. After that, they left us in peace.
Oskar Sala

This collaboration resulted in a commission from the Reich’s Radio organisation for several new instruments to be built for a weekly fifteen minute programme “Musik Auf Dem Trautonium” (playing German classical music accompanied by a pianist) and later commissions to use the instrument at large scale NDSAP rallies, outdoor concerts, speeches and, (alongside other electronic instruments such as Vierling’s GrosstonOrgel) the Olympic Games in Berlin in 1936. However, this patronage was short-lived as the Nazi’s asserted their traditional conservatism; Atonal, Experimental and avant-garde music alongside Jazz and other non-German culture was branded ‘entarte’ or ‘degenerate’. Trautwein and Sala’s workshop was denied funding and closed, the Trautonoium was relegated to performing Reich-approved music. Sala spent the war years touring throughout Germany and Axis occupied countries until he was conscripted in 1944 and sent to the Eastern Front

Oskar_Sala_Konzert_Trautonium_Friedrich_Trautwein_Leo_Borchard_Budapest_1942
Oskar Sala playing the Trautonium at a concert with Leo Borchard, Budapest 1942

After the end of the war Sala founded a studio for film music soundtrack production in Berlin,where, amongst many other projects, he recorded music for Hitchcock’s “the birds” .

Oskar Sala and Alfred Hitchcock working on the sound effects for "The Birds"
Oskar Sala and Alfred Hitchcock working on the sound effects for “The Birds”



Music

Oskar Sala – Triostück Paul Hindemith


Sources:

Electronic and Experimental Music: Pioneers in Technology and Composition. Thomas B. Holmes, Thom Holmes

Framing the Fifties: Cinema in a Divided Germany. edited by John Davidson, Sabine Hake

Music and German National Identity. edited by Celia Applegate, Pamela Potter

Peter Badge (2000). Oskar Sala:Pionier der elektronischen Musik. Satzwerk, 100pp. ISBN 3-930333-34-1

http://www.trautoniks.de/

The ‘Oscillon’ William Danforth & William Swann, USA, 1937

Oscillon
Mrs Danforth plays the ‘Oscillon’ 1937

The Oscillon was a one-off vacuum tube instrument created by Dr. W.E. Danforth to play the wind instrument parts for his local amateur Swarthmore Symphony Orchestra. The instrument was played by sliding the finger over the metal box to produce French Horn or Bass Clarinet tones fro  the loudspeaker:

When he is not experimenting on cosmic rays, high-haired Director William Francis Gray Swann of Franklin Institute’s Bartol Research Foundation, plays a cello. Young William Edgar Danforth, his assistant, plays a cello too. Both are mainstays of the Swarthmore (Pa.) Symphony Orchestra, a volunteer organization of about 40 men and women who play good music free. Because nobody in the orchestra can handle a French horn or a bass clarinet, Drs. Swann and Danforth built an electrical “oscillion” so ingenious that it can be made to sound like either, so simple that a child can master it. Last week at a Swarthmore concert the oscillion made its world debut, playing the long clarinet passages in Cesar Franck’s D Minor Symphony without a mishap. Listeners thought the oscillion lacked color, was a little twangier in tone, otherwise indistinguishable from the woodwind it replaced.

The Danforth & Swann oscillion is a simple-looking oblong wooden box with an electrical circuit inside. Current flows through a resistance, is stored up in a condenser, spills into a neon tube, becomes a series of electrical “pulses.” A loud speaker translates the pulses into sound.

To play music the oscillionist presses down on a keyboard and changes the resistance. This alters the frequency, thereby the pitch. As now constructed the oscillion has a range of five octaves which can easily be increased to eight. Inventors Danforth & Swann deplore the oscillion’s higher ranges, expect it will be most useful pinch-hitting for bass clarinet, bassoon, tuba and string bass.”

Courtesy: TIME http://www.time.com 2/4/2008


Sources

Time Magazine http://www.time.com 2/4/2008

Dr. W. E. Danforth, Bartol Research Foundation

Science Service at the Smithsonian Institute

http://www.amphilsoc.org/mole/view?docId=ead/Mss.B.Sw1-ead.xml

http://en.wikipedia.org/wiki/William_Francis_Gray_Swann

The ‘Vibroexponator’ Boris Yankovsky, Russia 1932

Boris yankovsky in 1939
Boris Yankovsky in 1939

Boris Yankovsky (1904-1973) worked with the Multzvuk group as a pupil of Arseney Araamov at Mosfilm, Moscow from 1931-32. However he grew disenchanted with what he considered to be an over simplified way of approaching acoustics. Yankovsky realised that pure uniform  waveforms do not represent timbre and that a more complex spectral approach needed to be developed. In 1932 Yankovsky left Multzvuk to pursue his ideas of spectral analysis, decomposition and re-synthesis . His project was based on his belief that it is possible to develop a universal language of sounds using combinations of hand drawn spectral ‘sound objects’ (similar to the much later cross-synthesis and phase-synthesis techniques).

“I found the idea of synthesis while I was laboriously working on ‘drawn sound’. And this is the chain of my consideration:
The colour of the sound depends on the shape of the sound wave;
Graphical colour of the sound wave could be analysed and represented as the Fourier series of periodic functions (sine waves);

Consequently the sound wave could be re-synthesised back with the same set of sine waves. Nobody did this before the invention of graphical (drawn) sound just because there was not a technical means and  methodology for sound reproduction from such graphical representations of sound. As with electrons (the neutrons and protons) the number of which defines the quality of the atom, so do the sine waves define the quality of the sound – it’s timbre.

Drawn scale with angles to create pitch shift
Drawn scale with angles to create pitch shift

The conclusion: why not initiate a  new science – synthetic acoustics?
It would make sense if we could define (at least in draft) a sort of periodic table of Sound Elements, like Mendeleev’s Periodic Table of Chemical Elements. The system of orchestral tone colours has gaps between the rows that could be filled by a means of synthesis, like the gaps between Mendeleev’s Periodic Table of Chemical Elements have been filled with the latest developments in chemistry […] It is obvious that the method of selection and crossing of sound and instruments, which is similar to the method of Michurin (Ivan Michurin Russian Biochemist and Horticulturist), will give us unprecedented, novel ‘fruit hybrids’ that are technically unobtainable for a usual orchestra […]
(Yankovsky 1932-1940; 15,45)

“It is important now to conquer and increase the smoothness of tone colours, flowing rainbows of spectral colours in sound, instead of monotonous colouring of stationary sounding fixed geometric figures [wave shapes], although the nature of these phenomena is not yet clear. The premises leading to the expansion of these phenomena – life inside the sound spectrum – give us the nature of the musical instruments themselves, but “nature is the best mentor” (Leonardo da Vinci) […] The new technology is moving towards the trends of musical renovation, helping us to define new ways for the Art of Music. This new technology is able to help liberate us from the cacophony of the well-tempered scale and related noises. Its name is Electro-Acoustics and it is the basis for Electro-Music and Graphical Sound”.
Yankovsky 1934

To implement these theories yankovsky invented the Vibroexponator; No images or diagrams have survived but the Vibroexponator appears to be a process using a modified rostrum animation stand that allowed the photographed ‘spectral templates’ to be translated into audible sound and then combined into complex sound.

“The Vibroexponator is a complex, bulky tool for optical recording of synthetic sounds to the soundtrack of ordinary 35mm film by means of a specially produced intensive negatives. the instrument is partly mechanised and provides various motions to the original negative. The automation of the direction control is partially broken and requires extra repairs and maintenance, […] The slide copying tool is intended for production of intensive negatives from films with transversal soundtracks. it too is a massive construction. The gearbox at least a 100-fold safety factor and a great power”

Nikolai Zimmin from the MINI institute describes the Vibroexponator in 1939

Yankovsky spent the next decade working on his spectral theories and building a ‘Syntone Database’ of his spectral templates by recording and analysing hundreds of samples of instruments from Bolshoi Theatre as well as samples of vowels and speech.

Slide copying machine tool diagram
Slide copying machine tool diagram

Political repression in the USSR stopped the funding of Yankovsky’s work until 1939 when he met the young inventor Evgeny Murzin who shared Yankovsky’s vision of a universal synthesis tool (which later emerged as the ANS Synthesiser) . Yankovsky together with Murzin and Yevgeny Sholpo formed the ‘Laboratory for Graphical Sound at the Institute of the Theatre and Film’ where he completed the final version of Vibroexponator. Further development of the instrument and of Yankovsky’s theories of spectral sound was halted by the outbreak of World War Two, Yankovsky never returned to graphical sound.

The Multzvuk group

Multzvuk group was formed in 1930 by Arseney Araazamov to conduct research into graphical sound techniques. The group was based at the Mosfilm Productions Company in Moscow (one of the leading film production companies in Moscow, renamed Gorki Film Studio in 1948) and consisted of composer and theoretician, Arseney Araamov, cameraman and draughtsmen  Nikolai Zhelynsky, animator Nikolai Voinov, painter and amateur acoustician Boris Yankovsky. In 1931 the group moved to ‘NIKFI’,  the ‘cientific Research Institute for Graphic Sound’. Leningrad, and and was renamed the ‘Syntonfilm laboratory’. In 1932 NIKFI stopped funding the group who then moved to Mezhrabpomfilm and finally closed in 1934.

From 1930-34 more than 2000 meters of sound track were produced by the Multzvuk group, including the experimental films ‘Ornamental Animation’, ‘Marusia Otravilas’, ‘Chinese Tune’, ‘Organ Chords’, ‘Untertonikum, Prelude’, ‘Piruet’, ‘Staccato Studies’, ‘Dancing Etude’ and ‘Flute Study’. The Multzvuk archive was kept for many years at Avraamov’s apartment, but destroyed in 1937.


 Sources

Electrified Voices: Medial, Socio-Historical and Cultural Aspects of Voice … edited by Dmitri Zakharine, Nils Meise

Graphical Sound Andrey Smirnov, Moscow, 2011

The ‘Ekvodin’ Andrei Volodin, Russia, 1937

The Ekvodin was a pioneering electronic synthesiser designed by the Russian engineer Andrei Volodin with Kovalski Konstantin and Yevgeny Murzin (later to invent the ANS synthesiser). The first versions of the Ekvodin were home-built experimental models that eventually became successful commercial keyboard instruments, used extensively in Russia throughout the 1940’s until the 1950’s. The Ekvodin won gold medals at the 1958 World Fair in Brussels and the Exhibition of Achievements of the National Economy in Moscow. By the 1970s, Andrei Volodin was teaching musical acoustics and sound synthesis at the Moscow State Conservatory, continuing research and development of the Ekvodin synthesizer and a new polyphonic instrument that was never finished.

Andrei Volodin playing an early model of the Ekvodin
Andrei Volodin playing an early model of the Ekvodin

The instrument was controlled via a six and a half octave, velocity sensitive keyboard which allowed the player to add vibrato by applying sideways movement to the key, plus a foot controlled volume pedal was included to add expression. Sound was generated from vacuum tubes and passed through a number of pre-set filter banks and octave dividers that could be combined to a total of 660 settings. the Ekvodin “was capable of imitating almost any symphony orchestra instrument, including percussion”

Ekvodin Diagram
Ekvodin Diagram

“We give musicians throughout the world a unique opportunity to breathe new life into their emotional art. Ekvodin – a musical instrument that’s perfect for orchestra and ensemble, and solos with piano accompaniment. The keyboard of this instrument is literally capable of singing glamorous melodies to fill every home. Any modern composer is pleasantly surprised when he discovered that Ekvodin is capable of producing a wide range of musical timbres with an extraordinary clarity and purity of sound. Performers, conductors and teachers will be fully satisfied with the outstanding expressive possibilities. Ekvodin opens truly cosmic prospects for every musician. Developed and manufactured in the USSR. ”

Ekvodin Advertising

Ekvodin B9 1950's Model
Ekvodin B9 1950’s Model

Sources

http://www.ruskeys.net

http://cuntroll.ru/articles/article15

the ‘Nivotone’ Alexei Voinov. Russia, 1931

The Nivotone optical reader
The Nivotone optical reader

The animator Nikolai Voinov (1900-1958), part of Arseney Avraamov‘s group ‘Multzvik’ in Moscow, 1931, started his own method of optical synthesis. Instead of drawing or printing to film Voinov cut wave forms from strips of paper which were then optically read by his machine the ‘Nivotone’ (‘Paper-Sound’) and translated into sound by a photo-electric process.

The Multzvuk group

Multzvuk group was formed in 1930 by Arseney Araazamov to conduct research into graphical sound techniques. The group was based at the Mosfilm Productions Company in Moscow (one of the leading film production companies in Moscow, renamed Gorki Film Studio in 1948) and consisted of composer and theoretician, Arseney Araamov, cameraman and draughtsmen  Nikolai Zhelynsky, animator Nikolai Voinov, painter and amateur acoustician Boris Yankovsky. In 1931 the group moved to ‘NIKFI’,  the Scientific Research Institute for Photography for Film. Moscow, and and was renamed the ‘Syntonfilm laboratory’. In 1932 NIKFI stopped funding the group who then moved to Mezhrabpomfilm and finally closed in 1934.

From 1930-34 more than 2000 meters of sound track were produced by the Multzvuk group, including the experimental films ‘Ornamental Animation’, ‘Marusia Otravilas’, ‘Chinese Tune’, ‘Organ Chords’, ‘Untertonikum, Prelude’, ‘Piruet’, ‘Staccato Studies’, ‘Dancing Etude’ and ‘Flute Study’. The Multzvuk archive was kept for many years at Avraamov’s apartment, but destroyed in 1937.


Sources

Electrified Voices: Medial, Socio-Historical and Cultural Aspects of Voice …edited by Dmitri Zakharine, Nils Meise

‘Graphical Soundtrack’ Arseney Avraamov, Russia, 1930

Arseny Avraamov in Moscow 1923. (Russian: Арсений Михайлович Авраамов), (born Krasnokutsky [Краснокутский], 1886 died Moscow, 1944)
Arseny Avraamov in Moscow 1923. (Russian: Арсений Михайлович Авраамов), (born Krasnokutsky [Краснокутский], 1886 died Moscow, 1944)
Arseny Mikhailovich Avraamov was an avant-garde Russian composer and theorist. He studied at the music school of the Moscow Philharmonic Society and when the first would war broke out he refused to join the army and fled the country working, among other things, as a circus artist. Avraamov returned during the revolution of 1917 where he pioneered optical synthesis techniques and developed his own  “Ultrachromatic” 48-tone micro tonal system ( “The Universal System of Tones,” 1927) but is probably best know for his “Simfoniya gudkov” or ‘symphony of sirens’ (November 7, 1922, Baku USSR) which involved navy ship sirens and whistles, bus and car horns, factory sirens, cannons, the foghorns of the entire Soviet flotilla of the Caspian Sea, artillery guns, machine guns, seaplanes, a specially designed “whistle main,” and renderings of Internationale and Marseillaise by a mass band and choir.

Avraamov's hand drawn audio waves
Avraamov’s hand drawn audio waves

Avraamov invented the first graphical soundtrack technique which involved hand-drawing geometrical representations of sound shapes and then repeatedly printing these shapes onto the audio-optical strip on a cine-film. This technique was later developed by Yevgeny Sholpo, Boris Yankovsky amongst others (including  Daphne Oram some thirty years later in England)

“By knowing the way to record the most complex sound textures by means of a phonograph, after analysis of the curve structure of the sound groove, directing the needle of the resonating membrane, one can create synthetically any, even most fantastic sound by  making a groove with a proper structure of shape and depth”.

From ‘Upcoming Science of Music and the New Era in the History of Music’ by Avraamov, 1916.

 

“Composer Arseny Avraamov at the scientific-research institute conducts the interesting experiments on a creation of the hand-drawn music. Instead of common sound recording on film by means of microphone and photocell, he simply draws on paper geometrical figures, then photographing them on sound track of the filmstrip. Afterwards this filmstrip is played as a common movie by means of film projector. Being read by photocell, amplified and monitored by loudspeaker, this filmstrip turns out to contain a well-known musical recording, while its timbre is impossible to relate to any existing musical instrument.
Comrade Avraamov conducts now a study in recording of more complicated geometrical figures. For instance, to record graphical representations of the simplest algebraic equations, to draw molecular orbits of some chemical elements. In this research composer is assisted by a group of young employee of the Research Institute for Film and Photo. By the end of December Avraamov will finish his new work and to show it to the film-community. Quite possibly the listening of the abstracts of “Hand Drawn Music” will be organized in radio broadcast”
(Kino 1931)

The Multzvuk group

Multzvuk group was formed in 1930 by Arseney Araazamov to conduct research into graphical sound techniques. The group was based at the Mosfilm Productions Company in Moscow (one of the leading film production companies in Moscow, renamed Gorki Film Studio in 1948) and consisted of composer and theoretician, Arseney Araamov, cameraman and draughtsmen  Nikolai Zhelynsky, animator Nikolai Voinov, painter and amateur acoustician Boris Yankovsky. In 1931 the group moved to ‘NIKFI’,  the Scientific Research Institute for Photography for Film. Moscow, and and was renamed the ‘Syntonfilm laboratory’. In 1932 NIKFI stopped funding the group who then moved to Mezhrabpomfilm and finally closed in 1934.

From 1930-34 more than 2000 meters of sound track were produced by the Multzvuk group, including the experimental films ‘Ornamental Animation’, ‘Marusia Otravilas’, ‘Chinese Tune’, ‘Organ Chords’, ‘Untertonikum, Prelude’, ‘Piruet’, ‘Staccato Studies’, ‘Dancing Etude’ and ‘Flute Study’. The Multzvuk archive was kept for many years at Avraamov’s apartment, but destroyed in 1937.


Sources

Avraamov, Ars. “Sinteticheskaya muzika” Sovetskaya Muzika , 1939, No.8, pp. 67-75

“Sound In Z: Experiments In Sound And Electronic Music In Early 20th Century Russia,”  Andrei Smirnov, Koening Books, ISBN 987-3-86560-706-5

‘Avant Garde composers of the USSR during the 1920’s’ Alexandra Martin

the ‘Warbo Formant Orgel’, Harald Bode & Christian Warnke, Germany, 1937

the Warbo Formant Orgel
The Warbo Formant Orgel

Harald Bode’s first commercial design was the wonderfully named “Warbo Formant Orgel” built while at the Heinrich-Hertz Institut für Schwingungsforschung at the Technische Hochschule in Berlin. The Warbo Formant Orgel was designed and built with the musical input from the composer and band-leader Christian Warnke (hence ‘War- Bo’  Warnke/Bode);

“Christian made the contribution of a musician — that means he told me what to do as far as all the features the instrument should have. I’ll have to go into more detail. Christian Warnke was a composer and musician, a bandleader with a fine ear for music, and he was an excellent violinist. He wasn’t involved in the design per se, just the specifications of the Warbo. And he sponsored the project on a minimum budget. Mind you this was in the second part of the 30s, which had still terrible after-effects of the depression. But the Warbo was my first major contribution in the field.”
Harald Bode in  SYNE magazine 1980
The Warbo Formant Orgel from the Hamburger Anzeiger. 21 September 1938.
The Warbo Formant Orgel from the Hamburger Anzeiger. 21 September 1938.
Description of the Formant operation of the Warbo Formant Orgel
Description of the Formant operation of the Warbo Formant Orgel

Two versions of the instrument were made and later stored at the  Heinrich-Hertz Institute (HHI) in Charlottenburg, Berlin. The institute’s building was completely destroyed during the war and with it the Warbo Formant Orgel. No recording of the Warbo Formant have been found. As with many other instruments designed by Bode the ‘Warbo Formant Orgel’ pioneered aspects of electronics that became standard in later instruments. The Warbo Formant Orgel was a partially polyphonic four-voice keyboard instrument with 2 filters and key assigned dynamic envelope wave shaping – features that were later used on the postwar ‘Melodium’ and  ‘Melochord’.

“… It [The Warbo Formant Orgel] was built with a relaxation type of oscillator. Four oscillators actually, that were selected for the 44-note keyboard. The major problem being the stability of the oscillators, which is critical when comparing one with the other, especially with four. So I dropped the idea of a four-note organ at that time and went on to the Melodium, which was created in 1938 and used in many large performances with the Berlin Philharmonic as a solo instrument. It was also used in some significant motion pictures of that era.”
Harald Bode in  SYNE magazine 1980

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.
Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960’s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.

Harald Bode’s sketchbooks

 


Sources

The ‘Trautonium’ Dr Freidrich Trautwein. Germany, 1930

Dr Freidrich Adolf Trautwein (b Würzburg 1888, Germany; d Düsseldorf 1956)

The Trautonium was an important electronic musical instrument developed by the electrical engineer Freidrich Trautwein in Germany in 1930. Trautwein designed the first version of the instrument with the aim of freeing the performer from the restrictions of fixed (Piano) intonation. To achieve this, he removed the usual piano-style manual in his design and replaced it with a fingerboard consisting of a metal wire stretched over a rail, marked with a chromatic scale. By pressing the wire, the performer touches the rail below and completes a circuit generating a tone. A similar technique, copied by the Trautwein, was a feature of Bruno Hellberger’s Hellertion in 1929 and some time later in the Ondes Martenot.

Trautwein demostrating the early Trautonium, showing the pressure sensitive resistant finger-wire controller.
Trautwein demostrating the early Trautonium c1933, showing the pressure sensitive resistant finger-wire controller.

The position of the player’s finger on the wire determines the resistance in the wire which in turn controls the pitch of the oscillator. This unusual approach allowed a great deal of expressive flexibility; by pressing harder on the wire, the player could subtly change the volume, and by moving the finger from side to side the instrument could produce violin like glissandi or more subtle vibrato effects. Overall volume was controlled by a foot-pedal allowing the performer to vary the volume and envelope of the notes.

Early version of the Trautonium
An early 1930’s version of the Trautonium at the Deutsches Museum, Berlin
The first Trautonium was a fairly simple monophonic vacuum tube ‘synthesiser’  generating sound from a single thyratron RK1 tube oscillator. However, by passing this tone through a series of resonant filters this simple sawtooth waveform could be coloured with a wide range of timbre characteristics. This unique form of subtractive synthesis (i.e. filtering down an existing complex waveform rather than creating a complex waveform from combinations of simple sine waves) produced a tone that was distinctive and unusual when compared to the rather plain sound of other valve instruments in the 1920-30’s.
advert
Telefunken advert of the 1930 version of the Trautonium
Telefunken
Advert of the Telefunken Volkstrautonium model Ela T42 showing the 380 Reichs Mark price

The commercial version of the Trautonium or ‘Volkstrautonium’ was manufactured and marketed by Telefunken in 1932. But, probably due to the unpopularity of a new, somewhat complicated keyboard-less instrument and high purchase price (c400 Reichs Marks;  equivalent of two and a half months of a worker’s salary  or more than five times the price of radio), only around thirteen items were sold and by 1938 it was discontinued. Despite the lack of domestic commercial interest, a number of composers wrote works for the instrument including Paul Hindemith ( who, switching allegiances from Jörg Mager’s Sphäraphon, learnt to play the Trautonium)  ‘Concertina for Trautonium and Orchestra’ , Höffer, Genzmer, Julius Weismann and most notably Oskar Sala. Sala became a virtuoso on the machine and eventually took over the development of the Trautonium producing his own variations- the ‘Mixtur-Trautonium’, The ‘Concert-Trautonium’ and the ‘Radio – Trautonium’. After the commercial failure of the instrument Trautwein abandoned further development to Oskar Sala who continued to work with the Trautonium until his death in 2002. Trautwein also produced an ‘Amplified Harpsichord’ in 1936 and ‘Electronic Bells’ in 1947.

Trautwein (L) and Oskar Sala with the Trautonium Berlin, c 1933
Trautwein (L), Paul Hindemith and Oskar Sala playing the Trautonium. Berlin, c 1933
Volkstrautonium
Telefunken 1932 Volkstrautonium model Ela T 42 at the Deutsche Museum, Berlin
The Trautonium in 'Popular Mechanics' magazine USA 1939
The Trautonium in ‘Popular Mechanics’ magazine USA 1939
The Trautonium in 'Popular Mechanics' magazine USA 1939
The Trautonium in ‘Popular Mechanics’ magazine USA 1939





trautwein_1930
Dr Freidrich Adolf Trautwein (b Würzburg 1888, Germany; d Düsseldorf 1956) seen here in 1930.

Biographical notes: Dr Freidrich Adolf Trautwein (b Würzburg 1888, Germany; d Düsseldorf 1956)

Trautwein studied electrical engineering at the Technical University of Karlsruhe and later, law in Berlin. In the First World War he was a lieutenant in the German Army and led a mounted radio squad. After the war in 1919 he studied Physics in Heidelberg and Karlsruhe where he received his PhD in engineering. The following year he started working for the State Telegraph Service where he was involved in the establishment of the first German radio station in Berlin.

In 1929 he took a teaching position at the Berlin State Music Academy where he started early development of the Trautonium with the patronage and guidance of the composer Paul Hindemith. The first version of the Trautonium was completed in 1930 and a commercial version produced in 1933 by Telefunken; the Telefunken Volkstrautonium model Ela T42. After the commercial failure of his invention, Trautwein abandoned the instrument to composer and Trautonium virtuoso, Oskar Sala

The Trautonium played by Oskar Sala, incorporated into the 'Das Orchester der Zukunft (The Future Orchestra), alongside a Hellertion, Thereminvox and Elektrochord.
The Trautonium played by Oskar Sala, incorporated into ‘Das Orchester der Zukunft (The Orchestra of the Future), alongside a Hellertion, Thereminvox and Elektrochord c 1932

In 1949 Trautwein worked in briefly at the Bikla School for Photography and Film in Düsseldorf and then established the sound engineering course at the Düsseldorf Conservatory (now the Robert-Schumann-Hochschule in Dusseldorf ) which still forms the basis of the current sound engineering training unit. In 1952 Trautwein developed an evolved version of the Trautonium for WDR Electronic Music Studio, the Electronic Monochord. Trautwein died in Düsseldorf in 1956.


Sources:

Peter Donhauser: Electric sound machines Böhlau, Vienna 2007.

Donhauser, P.: “Technical gimmick or fantastic reality Telefunken and the first electronic instruments in Germany?”, Lecture at the DTM Berlin, 03.11.2006

Peter Badge “Oskar Sala: Pionier der elektronischen Musik” Edited by Peter Friess Forword by Florian Schneider Satzwerk Verlag. ISBN 3-930333-34-1

“Oskar Sala-Die vergangene Zukunft des Klanges” A film by Oliver Rauch and Ingo Rudloff. Upstart Filmproduktion Wiesbaden

http://www.radiomuseum.org/r/telefunken_trautonium_ela_t_42_t42vo.html

The ‘Ondium Péchadre’ Henri Camille Robert Péchadre. France, 1929

The Ondium played by
The Ondium played by the Pianist Gaston Wiener. (‘L’Ouest Eclair’ 1931)

The Ondium Péchadre was developed in France by  Henri Camille Robert Péchadre in 1929. The instrument was a monophonic heterodyning vacuum tube oscillator based instrument built into a light and portable heart shaped box, in performance the base of the instrument rested on the players knees and the instrument was supported against a table.

The seven octave range of the instrument was controlled – in a way similar to Jorg Mager’s Sphäraphon of 1924 – by moving a pointer around a circular calibrated dial while the left hand controlled the volume of the sound with a velocity sensitive push button device. This allowed the instrument to create a continuous pitch similar to a violin or cello, or by using the volume control, the sound wave’s envelope could be altered to give a more staccato effect.

The indium described in 'Le Menestrel' in 1933
The Ondium as described in ‘Le Menestrel’ in 1933

As with other similar instruments, The Ondium output sound to an amplifier and loudspeaker but, uniquely, was also able to transmit sounds directly via radio waves to a radio receiver or network.


“The Ondium we can report, is of the family of radio-electronic instruments similar to developments by Martenot and others. It differs however in by some points, in particular by this one; The Ondium is the only device of this kind that can be picked up  by radio.”

Gaston Wiener quoted from ‘L’Ouest-Éclair’ 1935.

Péchadre toured with the Ondium throughout France in the 1930s where, accompanied by an orchestra, he commissioned well known musicians (Gaston Wiener, pianist, Jacques Serres, cellist and Georges Hugo, pianist)  to perform popular classical works by Saint-Saëns, Mozart, Delibes and others as well as surprising the audience with the instruments versatility by imitating bird song.

The Ondium Péchadre played by it's inventor Msr Péchadre in 1930 (from 'Un appareil de musique radioélectrique; l'ondium Péchadre' by E.-WEISS.)
The Ondium Péchadre played by it’s inventor Msr Péchadre in 1930 (from ‘Un appareil de musique radioélectrique; l’ondium Péchadre’ by E.-WEISS.)
The Ondium with back cover removed showing control levers and tone generators. (from 'Un appareil de musique radioélectrique; l'ondium Péchadre' by E. WEISS.)
The Ondium with back cover removed showing control levers and tone generators. (from ‘Un appareil de musique radioélectrique; l’ondium Péchadre’ by E. WEISS.)

ondium_02_lejournaljuif_1935
ondium_02_revue_du_vrai_et_du_beau_1933_c_balleroy

Minister
Telecoms Minister M. Mallarmé in front of boxed commercial versions of the Ondium at the ’21st Radio Salon’ Paris, 1934. Image: ‘Paris Soir’ September 1934.

Sources:

‘Le Ménestrel’ Paris 1933.

‘L’Ouest Eclair’ Rennes. 29/10/1931 number 12775.

‘Un appareil de musique radioélectrique; l’ondium Péchadre’ by E. WEISS. La Nature N° 2837 – 15 juillet 1930 Pages 64-65

The ‘Rhythmicon’ Henry Cowell & Leon Termen. USA, 1930

Henry Cowell and the Rhythmicon
Henry Cowell and the Rhythmicon

In 1916 the American Avant-Garde composer Henry Cowell was working with ideas of controlling cross rhythms and tonal sequences with a keyboard, he wrote several quartet type pieces that used combinations of rhythms and overtones that were not possible to play apart from using some kind of mechanical control- “un-performable by any known human agency and I thought of them as purely fanciful”.(Henry Cowell) In 1930 Cowell introduced his idea to Leon Termen, the inventor of the Theremin, and commissioned him to build him a machine capable of transforming harmonic data into rhythmic data and vice versa.

“My part in its invention was to invent the idea that such a rhythmic instrument was a necessity to further rhythmic development, which has reached a limit more or less, in performance by hand, an needed the application of mechanical aid. The which the instrument was to accomplish and what rhythms it should do and the pitch it should have and the relation between the pitch and rhythms are my ideas. I also conceived that the principle of broken up light playing on a photo-electric cell would be the best means of making it practical. With this idea I went to Theremin who did the rest – he invented the method by which the light would be cut, did the electrical calculations and built the instrument.”

Henry Cowell

“The rhythmic control possible in playing and imparting exactitudes in cross rhythms are bewildering to contemplate and the potentialities of the instrument should be multifarious… Mr. Cowell used his rythmicon to accompany a set of violin movements which he had written for the occasion…. The accompaniment was a strange complexity of rhythmical interweavings and cross currents of a cunning and precision as never before fell on the ears of man and the sound pattern was as uncanny as the motion… The write believes that the pure genius of Henry Cowell has put forward a principle which will strongly influence the face of all future music.”
Homer Henly, May 20, 1932


The eventual machine was christened the “Rythmicon” or “Polyrhythmophone” and was the first electronic rhythm machine. The 17 key polyphonic keyboard produced a single note repeated in periodic rhythm for as long as it was held down, the rhythmic content being generated from rotating disks interrupting light beams that triggered photo-electric cells. The 17th key of the keyboard added an extra beat in the middle of each bar. The transposable keyboard was tuned to an unusual pitch based on the rhythmic speed of the sequences and the basic pitch and tempo could be adjusted by means of levers.Cowell wrote two works for the Rythmicon “Rythmicana” and “Music for Violin and Rythmicon” (a computer simulation of this work was reproduced in 1972). Cowell lost interest in the machine, transferring his interest to ethnic music and the machine was mothballed.

Rhythmicon Discs
Rhythmicon Discs
After Cowell, the machines were used for psychological research and one example (non working) of the machine survives at the Smithsonian Institute. The Rhythmicon was re-discoverd twenty-five years after its creation by the producer Joe Meek (creator of the innovative hit single ‘Telstar’, 1961) apparently discovered abandoned in a New York pawnbrokers. Meek brought it back to his home studio in London where it was used on several recordings. This Rhythmicon was used to provide music and sound effects for various movies in the Fifties and Sixties, including: ‘The Rains of Ranchipur’; ‘Battle Beneath the Earth’; Powell and Pressburgers’ ‘They’re a Weird Mob’; ‘Dr Strangelove’, and the sixties animated TV series ‘Torchy, The Battery Boy’.The Rhythmicon was also rumoured to have been used on several sixties and seventies records, including: ‘Atom Heart Mother’ by Pink Floyd; ‘The Crazy World of Arthur Brown’ by Arthur Brown, and ‘Robot’ by the Tornadoes. Tangerine Dream also used some sequences from the Rhythmicon on their album ‘Rubicon’.
Rhythmicon Discs
Rhythmicon Discs

Sources:

“Henry Cowell: A record of his activities” Compiled June 1934 by Olive Thompson Cowell.