The ‘Sound Processor’ or ‘Audio System Synthesiser’ Harald Bode, USA, 1959

Harald Bode demonstrating the
Harald Bode demonstrating the Audio System Synthesiser

In 1954 the electronic engineer and pioneering instrument designer Harald Bode moved from his home in Bavaria, Germany to Brattleboro, Vermont, USA to lead the development team at the Estey Organ Co, working on developing his instrument the ‘Bode Organ’ as the prototype for the new Estey Organ. As a sideline Bode set up his own home workshop in 1959 to develop his ideas for a completely new and innovative instrument “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances”. Bode’s objective was to produce a device that could included everything needed for film and TV audio production; soundtracks, sound design and audio processing– perhaps inspired by Oskar Sala’s successful (and lucrative ) film work, such as on Alfred Hitchcock  ‘The Birds’ (1963).

Bode’s new idea was to create a modular device where different components could be connected as needed; and in doing so created the first modular synthesiser – a concept that was copied sometime later by Robert Moog and Donald Buchla amongst others. The resulting instrument  the ‘Audio System Synthesiser’ allowed the user to connect multiple devices such as Ring modulators, Filters, Reverb Generators etc in any order to modify or generate sounds. The sound could be recorded to tape, mixes or further processing; “A combination of well-known devices enabled the creation of new sounds” (Bode 1961)

circuitry of the
circuitry of the Audio System Synthesiser

Bode wrote a description of the Audio System Synthesiser in the December 1961 issue of Electronics Magazine and demonstrated it at the Audio Engineering Society (AES), a convention for the electro-acoustics industry in New York in 1960. In the audience was a young Robert Moog who was at the time running a business selling Theremin Kits. Inspired by Bode’s ideas Moog designed the famous series of Moog modular synthesisers. Bode would later license modules to be included in Moog modular systems including a Vocoder, Ring Modulator, filter and Pitch shifter as well as producing a number of components which were widely used in electronic music studios during the 196os

Front panel of the Audio System Synthesiser
Front panel of the Audio System Synthesiser

Text from the 1961 edition of Electronics Magazine

New sounds and musical effects can be created either by synthesizing acoustical phenomena, by processing natural or artificial (usually electronically generated) sounds, or by applying both methods. Processing acoustical phenomena often results in substantial deviations from the original.

Production of new sounds or musical effects can be made either by intermediate or immediate processing methods. Some methods of intermediate processing may include punched tapes for control of the parameters of a sound synthesizer, and may also include such tape recording procedures as reversal, pitch-through-speed changes, editing and dubbing.

Because of the time differential between production and performance when using the intermediate process, the composer-performer cannot immediately hear or judge his performance, therefore corrections can be made only after some lapse of time. Immediate processing techniques present no such problems.

Methods of immediate processing include spectrum and envelope shaping, change of pitch, change of overtone structure including modification from harmonic to nonharmonic overtone relations, application of periodic modulation effects, reverberation, echo and other repetition phenomena.

The output of the ring-bridge modulator shown in Figure 2a yields the sum and differences of the frequencies applied to its two inputs but contains neither input frequency. This feature has been used to create new sounds and effects. Figure 2b shows a tone applied to input 1 and a group of harmonically related frequencies applied to input 2. The output spectrum is shown in Figure 2c.

Due to operation of the ring-bridge modulator, the output frequencies are no longer harmonically related to each other. If a group of properly related frequencies were applied to both inputs and a percussive-type envelope were applied to the output signal, a bell-like tone would be produced.

In a more general presentation, the curves of Figure 3 show the variety of tone spectra that may be derived with a gliding frequency between 1 cps and 10 kcps applied to one and two fixed 440 and 880 cps frequencies (in octave relationship) applied to the other input of the ring-bridge modulator. The output frequencies are identified on the graph.

Frequencies applied to the ring-bridge modulator inputs are not limited to the audio range. Application of a subsonic frequency to one input will periodically modulate a frequency applied to the other. Application of white noise to one input and a single audio frequency to the other input will yield tuned noise at the output. Application of a percussive envelope to one input simultaneously with a steady tone at the other input will result in a percussive-type output that will have the characteristics of the steady tone modulated by the percussive envelope.

The unit shown in Figure 4 provides congruent envelope shaping as well as the coincident percussive envelope shaping of the program material. One input accepts the control signal while the other input accepts the material to be subjected to envelope shaping. The processed audio appears at the output of the gating circuit.

To derive control voltages for the gating functions, the audio at the control input is amplified, rectified and applied to a low-pass filter. Thus, a relatively ripple-free variable DC bias will actuate the variable gain, push-pull amplifier gate. When switch S1 is in the gating position, the envelope of the control signal shapes that of the program material.

To prevent the delay caused by C1 and C2 on fast-changing control voltages, and to eliminate asymmetry caused by the different output impedances at the plate and cathode of V2, relatively high-value resistors R3 and R4 are inserted between phase inverter V2 and the push-pull output of the gate circuit. These resistors are of the same order of magnitude as biasing resistors R1 and R2 to secure a balance between the control DC signal and the audio portion of the program material.

The input circuits of V5 and V6 act as a high-pass filter. The cutoff frequency of these filters exceeds that of the ripple filter by such an amount that no disturbing audio frequency from the control input will feed through to the gate. This is important for clean operation of the percussive envelope circuit. The pulses that initiate the percussive envelopes are generated by Schmitt trigger V9 and V10. Positive-going output pulses charge C5 (or C5 plus C6 or C7 chosen by S2) with the discharge through R5. The time constant depends on the position of S2.

To make the trigger circuit respond to the beginning of a signal as well as to signal growth, differentiator C3 and R6 plus R7 is used at the input of V9. The response to signal growth is especially useful in causing the system to yield to a crescendo in a music passage or to instants of accentuation in the flow of speech frequencies.

The practical application of the audio-controlled percussion device within a system for the production of new musical effects is shown in Figure 5. The sound of a bongo drum triggers the percussion circuit, which in turn converts the sustained chords played by the organ into percussive tones. The output signal is applied to a tape-loop repetition unit that has four equally spaced heads, one for record and three for playback. By connecting the record head and playback head 2 in parallel, output A is produced. By connecting playback head 1 and playback head 3 in parallel, output B is produced, and a distinctive ABAB pattern may be achieved. Outputs A and B can be connected to formant filters having different resonance frequencies.

The number of repetitions may be extended if a feedback loop is inserted between playback head 2 and the record amplifier. The output voltages of the two filters and the microphone preamplifier are applied to a mixer in which the ratio of drum sound to modified percussive organ sound may be controlled.

The program material originating from the melody instrument is applied to one of the inputs of the audio-controlled gate and percussion unit. There it is gated by the audio from a percussion instrument. The percussive melody sounds at the output of the gate are applied to the tape-loop repetition system. Output signal A — the direct signal and the information from playback head 2 — is applied through amplifier A and filter 1 to the mixer. Output signal B — the signals from playback heads 1 and 3 — is applied through amplifier B to one input of the ring-bridge modulator. The other ring-bridge modulator input is connected to the output of an audio signal generator.

The mixed and frequency-converted signal at the output of the ring-bridge modulator is applied through filter 2 to the mixer. At the mixer output a percussiveABAB signal (stemming from a single melody note, triggered by a single drum signal) is obtained. In its A portion it has the original melody instrument pitch while its B portion is the converted nonharmonic overtone structure, both affected by the different voicings of the two filters. When the direct drum signal is applied to a third mixer input, the output will sound like a voiced drum with an intricate aftersound. The repetition of the ABAB pattern may be extended by a feedback loop between playback head two and the record amplifier.

When applying the human singing voice to the input of the fundamental frequency selector, the extracted fundamental pitch may be distorted in the squaring circuit and applied to the frequency divider (or dividers). This will derive a melody line whose pitch will be one octave lower than that of the singer. The output of the frequency divider may then be applied through a voicing filter to the program input of the audio-controlled gate and percussion unit. The control input of this circuit may be actuated by the original singing voice, after having passed through a low-pass filter of such a cutoff frequency that only vowels —typical for syllables — would trigger the circuit. At the output of the audio-controlled gate, percussive sounds with the voicing of a string bass will be obtained mixed with the original voice of the singer. The human voice output signal will now be accompanied by a coincident string bass sound which may be further processed in the tape-loop repetition unit. The arbitrarily selected electronic modules of this synthesizer are of a limited variety and could be supplemented by other modules.

A system synthesizer may find many applications such as exploration of new types of electronic music or as a tool for composers who are searching for novel sounds and musical effects. Such a device will present a challenge to the imagination of composer-programmer. The modern approach of synthesizing intricate electronic systems from modules with a limited number of basic functions has proven successful in the computer field. This approach has now been made in the area of sound synthesis. With means for compiling any desired modular configuration, an audio system synthesizer could become a flexible and versatile tool for sound processing and would be suited to meet the ever-growing demand for exploration and production of new sounds.

Harald Bode 1961

PDF of the article here: 1961 edition of Electronics Magazine

Bode's
Bode’s Audio System Synthesiser’

Diagram of the Bode Synthesiser
Diagram of the Bode Synthesiser
Diagram of the Bode Synthesiser
Diagram of the Bode Synthesiser

Audio Files:

Demonstration of the Audio System Synthesiser by Harald bode in 1962. 4.36 demo

PHASE 4-2 ARPEGGIO” (4:51) Composed in 1964 while Bode was experimenting with various phasers, filters, and frequency shifters.


Sources:

http://cec.sonus.ca/econtact/13_4/palov_bode_biography.html

http://cec.sonus.ca/econtact/13_4/bode_synthesizer.html

http://esteyorganmuseum.org/

The ‘Polychord’ Harald Bode, Germany, 1949

The Polychord II
Bode’s Polychord III 1951

The Polychord Organ was Harald Bode’s first postwar design commissioned by the Bayerischer Rundfunk, Southern German Radio as an electronic organ for live radio broadcasts and was often heard played by the popular organist Fekko von Ompteda and on occasions by Harald Bode himself.  The instrument remained in use at Bayerischer Rundfunk from 1950 until 1973 used for  in-house productions such as special effects, music for comedy shows, dance music and religious music.

Early version of the Polychord
Early version of the Polychord

The Polychord was a simpler, polyphonic version of the rather complex Melochord, re-designed with the professional organist in mind; offering a bank of preset sounds as well as free control of sound synthesis. Bode produced a second version, The Polychord III in 1951, produced and marketed by  Apparatwerk Bayern gmbh (ABW) company in Bavaria Germany, and the Bode Organ which became the prototype of the Estey Electronic Organ after his departure to the USA in 1954. The Bayerischer Rundfunk Polychord can be seen (2014) at the Musical Instruments collection at the Deutsches Museum von Meisterwerken der Naturwissenschaft und Technik in Munich, Germany.

 

Bode's notes for a prototype of the Polychord c 1949
Bode’s notes for a prototype of the Polychord c 1949
Bode's notes for a prototype of the Polychord c 1949
Bode’s notes for a prototype of the Polychord c 1949

 


Sources

Bode’s Melodium and Melochord by Thomas L. Rhea. Contemporary Keyboard magazine (January 1980)

http://cec.sonus.ca/econtact/13_4/palov_bode_notebooks.html

the ‘Warbo Formant Orgel’, Harald Bode & Christian Warnke, Germany, 1937

Harald Bode’s first commercial design was the wonderfully named “Warbo Formant Orgel” built while at the Heinrich-Hertz Institut für Schwingungsforschung at the Technische Hochschule in Berlin. The Warbo Formant Orgel was designed and built with the musical input from the composer and band-leader Christian Warnke (hence ‘War- Bo’  Warnke/Bode);

“Christian made the contribution of a musician — that means he told me what to do as far as all the features the instrument should have. I’ll have to go into more detail. Christian Warnke was a composer and musician, a bandleader with a fine ear for music, and he was an excellent violinist. He wasn’t involved in the design per se, just the specifications of the Warbo. And he sponsored the project on a minimum budget. Mind you this was in the second part of the 30s, which had still terrible after-effects of the depression. But the Warbo was my first major contribution in the field.”
Harald Bode in  SYNE magazine 1980
The Warbo Formant Orgel  from the Hamburger Anzeiger. 21 September 1938.
The Warbo Formant Orgel from the Hamburger Anzeiger. 21 September 1938.
Description of the Formant operation of the Warbo Formant Orgel
Description of the Formant operation of the Warbo Formant Orgel

Two versions of the instrument were made and later stored at the  Heinrich-Hertz Institute (HHI) in Charlottenburg, Berlin. The institute’s building was completely destroyed during the war and with it the Warbo Formant Orgel. No recording of the Warbo Formant have been found. As with many other instruments designed by Bode the ‘Warbo Formant Orgel’ pioneered aspects of electronics that became standard in later instruments. The Warbo Formant Orgel was a partially polyphonic four-voice keyboard instrument with 2 filters and key assigned dynamic envelope wave shaping – features that were later used on the postwar ‘Melodium’ and  ‘Melochord’.

“… It [The Warbo Formant Orgel] was built with a relaxation type of oscillator. Four oscillators actually, that were selected for the 44-note keyboard. The major problem being the stability of the oscillators, which is critical when comparing one with the other, especially with four. So I dropped the idea of a four-note organ at that time and went on to the Melodium, which was created in 1938 and used in many large performances with the Berlin Philharmonic as a solo instrument. It was also used in some significant motion pictures of that era.”
Harald Bode in  SYNE magazine 1980

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.
Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960’s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevsky at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barber Pole Phaser’.

Harald Bode’s sketchbooks

 


Sources

The ‘Melodium’. Harald Bode, Germany, 1938

The "Melodium" (1938)
The “Melodium” (1938)
Bode’s second instrument, previewed in 1938 was a monophonic touch sensitive keyboard instrument, the ‘Melodium’, developed with the assistance of Oskar Vierling, inventor of the ‘Grosstonorgel’. The instrument was used extensively for film music and ‘light music’ during the 1940’s.
Bode had designed oscillators with good pitch stability given the technology of the time, but he realized that a monophonic instrument would present far fewer tuning problems than his radical Warbo Organ. Like all good designers, Bode understood the necessity for providing increased nuance capability in a solo instrument; hence, touch sensitivity. The Melodium had a 49-note keyboard (low-note priority). But unlike traditional keyboards, each key had a fulcrum, or pivot point, not at the rear of the key, but at its midpoint. Each key was an individual little teeter-totter; when the performer depressed any key, he or she could seesaw a long aluminium rail located at the rear of all keys up and down. This rail made contact with a strip of felt soaked in glycerine — a so-called “liquid potentiometer.” Depression of the felt altered the electrical resistance between two electrodes, providing loudness control. This was a direct keying system that should not be confused with modern force-sensitive keyboards found on certain synthesizers. On the Melodium, the actual onset of sound was begun like it is on most acoustic instruments: as a function of the performer’s continuously variable mechanical effort. This is unlike most of today’s synthesizers; they have electronic envelope generators with fixed time constants for attack and release. Even when a synthesizer is force-sensitive, this sensitivity is usually in conjunction with the unvarying envelope generator attack and release. (Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68) )

The articulation on the Melodium has been likened to that of Franklin’s Glass Harmonica, an instrument having rotating glass disks that are played with moistened fingers. This characteristic singing (slow) attack, and the tone colours produced by formant filters borrowed from the earlier four-note organ, made the Melodium an expressive and colourful instrument that found public acceptance. Bode says:

… it was a very responsive instrument to the response of the artist, although it didn’t have these automatic — or maybe because it didn’t have these automatic [envelope] — controls.” Harald Bode

Due to its unorthodox design, the Melodium was not suitable for mass production; it found public acceptance through its rental for film scores, stage plays and on German radio. It enjoyed a considerable vogue with German film score composers. The brief career of the Melodium ended in 1941 due to the war; eventually Bode had to cannibalize the instrument due to the scarcity of electronic components.

The "Melodium" (1938)
The “Melodium” (1938)

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.
Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960’s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.

 


Sources

Bode’s Melodium and Melochord by Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68) 

The ‘Tuttivox’ or ‘Bode Clavioline’. Harald Bode, Germany,1946

Tuttivox Orchestra
Tuttivox Orchestra – with a bode Organ in the background
The Tuttivox was essentially a polyphonic German licensed version of Raymond Martin’s Clavioline, manufactured by the Danish company  Jörgensen Electronics, in Düsseldorf, Germany . This updated Clavioline was created by the pioneering German engineer, Harald Bode. The Tuttivox was a small portable one keyboard, amplifier and speaker combination buitl into a wooden carrying case. the keyboard was usually played attached to a piano and intended for use with commercial dance and popular music bands of the day. the instrument created it’s sound using fourtyE- series valves;  thirty six as audio oscillators with filtering provided by coils and capacitors. There are 3 foot positions available and 36 filter settings, which could be combined to enable a variety of tone colors. the Tuttivox remained in production until the 1960s.
Bode, in collaboration with French instrument maker René Seybold, later developed an extended version of the Clavioline with an extra two octaves on the keyboard called the ‘Concert Clavioline’ and a combination of the Concert Clavioline and the Tuttivox was marketed as the ‘Combichord’ “The smallest church organ in the world”.

Sounds of the Tuttivox/Bode Clavioline

(0:32). An ensemble of claviolines performing dance music with a range of orchestral sounds. From the Jörgensen (Düsseldorf) promotional tape, “6 Claviolines”.

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.
Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960’s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.


Sources:

Tuttivox Homepage: http://users.informatik.haw-hamburg.de/%7Ewindle_c/TableHooters/instruments.html

http://weltenschule.de/TableHooters/Joergensen_Clavioline.html

The ‘Melochord’, Harald Bode, Germany, 1947

Harld Bode's Melochord
Harld Bode’s Melochord of 1947
The Melochord was a post-war  development of  Bodes’ earlier Melodium, which, due to it’s complexity and unorthodox design wasn’t suitable for mass production. After the war, Bode cannibalised parts from the Melodium to build the Melochord, a monophonic keyboard instrument based on vacuum tube technology. The keyboard used pitches derived from the traditional equal-tempered 12 note scale with switches extending the 37 note range from three octaves to seven. A foot pedal allowed overall control of the volume and a novel electronically operated envelope shaper could be triggered for each key.
“…So from 1939 to 1945 I didn’t do anything other than writing a few publications on the field of electronic music. In 1947, when we finally got out of the mess of the post-war period, I created the Melochord. It was originally intended as an instrument which combined melody and chord capability all in one manual, but I then decided to use two voices on this one manual and split up a five-octave keyboard in such a way that the upper three octaves were assigned to one generator and the lower two octaves assigned to another generator. It was designed so that those two portions of the keyboard were independent, so they went to separate tone shaping means and to separate expression pedals, and the voices were arranged to allow for voice crossings. It was used on the German Broadcasting System, especially in Munich. It was not a production instrument (commercial product, that is), it was built and used by myself and was leased out to movie companies and for use in recordings with bands. It was also featured in a band I travelled with (as well as recorded with) in Germany. A second Melochord was commissioned by the Bonn University through Meyer-Eppler, who also initiated the work of Dr. Enkel at the Cologne Electronic Music Studio. This is how the Melochord was commissioned by the Cologne Electronic Music Studio. It was used by Karlheinz Stockhausen thereafter. Also, a Melochord was built for use by the NWDR in Hamburg and for a theatre in Munich, and a few others but it was not a mass production item.”
Interview with Harald Bode, 1980 by SYNE magazine
Later version Melochord
Later version Melochord

A later version incorporated two keyboards the second keyboard being able to control the timbre of the other, a technique used in later modular type synthesizers.The Melochord was used extensively in the early days of the electronic studio at Bonn University by Dr Werner Meyer-Eppler and was later installed at North West German Radio studios in Köln (alongside a Monochord and a simple oscillator and filter system) where it was used by the Elektronische Musik group throughout the 1950’s. Artists who used the Melochord and Monochord at the studio included Herbert Eimert, Robert Beyer, Karel Goeyvarts, György Ligeti, Henri Posseur, Karlheinz Stockhausen and others.

Bode playing the Melochord
Bode playing the Melochord

Despite the instruments technical drawbacks, the Melochord was destined to play a historic role in the future of electronic music, Meyer-Eppler’s visionary and influential work “Klangmodelle” and lectures at Darmstadt New Music School were all based on the Melochord and in 1961 Harald Bode, recognizing the significance of transistor based technology over valve based synthesis, wrote a paper that was to revolutionise electronic musical instruments. Bode’s ideas of modular and miniature self contained transistor based machines was taken up and developed in the early 1960’s by Robert Moog and Donald Buchla amongst others.

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.
Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960’s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.

Harald Bode’s sketchbooks

 

 


Sources

Bode’s Melodium and Melochord by Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68)