The Thyratone. Richard Henry Goldfogle Dorf. USA, 1945

The keyboard of Richard H Dorf's 'Thyratone'
The keyboard of Richard H Dorf’s ‘Thyratone’

Richard H. Dorf (b 14 Mar 1921; d New York, 21 June 1989) was an electronic engineer, prolific author on the subject of vacuum tube electronics and electronic organs, and the head of the Schober Organ Corporation – a supplier of self-build electronic organ kits (using patents licensed from Baldwin organ Co.).

In 1945 Dorf patented the Thyratone which was also supplied in kit form or simply as a circuit diagram and again, in terms of circuitry and filter formant construction, used a design inspired by Winston Kock’s Baldwin Organ .

The Thyratone's seperate tone and amplifier unit
The Thyratone’s seperate tone and amplifier unit

The device was a simple, compact monophonic neon/thyratone vacuum tube instrument similar to the Hammond Solovox and Clavioline family of instruments i.e. designed as a conventional piano extension. The Thyratone was powered by a three octave keyboard with a single sawtooth oscillator for each octave and a series of filters and vibrato effects to colour the tone. The keyboard could be attached to the host-piano keyboard using metal brackets and connected to the Thyratone’s tone generator box, amplifier and loudspeaker via a cable.

Thyratone circuit diagram
Thyratone circuit diagram

 

Thyratone tone unit and amplifier circuit diagram
Thyratone tone unit and amplifier circuit diagram

Dorf designed as a miniature pipe organ, with familiar stop -based controls for timbre, pitch and vibrato (from another neon tube ‘LFO’); essentially preset setting for the tone filters and vibrato. A foot operated ‘expression pedal’ allowed the player control over the Thyratone’s output envelope.

Schober under Dorf’s supervision continued to develop electronic organ kits – starting in 1954 with valve based organs and moving to transistor organs in the mid 1960s – as well as various peripherals such as the  Schober Tunesmith (1969), The Dynabeat drum machine (1968) and various tape echo units and stroboscopic tuning devices.

Schober Dynabeat, top view showing small percussion pads
Schober Dynabeat, top view showing small percussion pads

Schober Dynabeat drum synthesiser

The Dynabeat was an early solid state transistor based drum machine that was played via pads or a keyboard rather then the usual pre-set rhythms. Percussion sounds included:

  1. Bass
  2. Tom Tom
  3. Woodblock LO
  4. Woodblock HI
  5. Cymbal Brush
  6. Cymbal Crash
  7. Bongo LO
  8. Bongo HI
  9. Snare Drum (when held down does a roll)
  10. Castanets (when held down does a roll)

Tunesmith control panel

Schober Tunesmith

The tunesmith was basically the evolution of the Thyratone but equipped with solid state transistors rather than neon tubes.

dynabeat_popmechandec69-1Like the Thyratone, The Tunesmith was a monophonic 32 note portable mini-organ with a two and half octave range. The basic tone controls allowed the player to switch between different organ voices, trumpet, violin, cello, oboe and flute and modify the note with a variable speed vibrato.


Sources

Hugh Davies. The Grove Dictionary of Musical Instruments, 2nd edition, issue Published in print January 2001 | Published online February 2013 | e-ISBN: 9781561592630

‘Electronic Musical Instruments’ by Richard H. Dorf. New York : Radiofile, [1968]

‘Neon Organs’ by Richard H. Dorf . Electronics. p36 August 29, 1958

‘Electronics and Music’ Part IX-X by Richard H. Dorf. Radio Electronics. p39-68 March 1951.

Schober Organ Orphans’ Page

The ‘Baldwin Organ’ Winston E. Kock & J.F. Jordan, USA, 1946

Early Model of Winston Kock's Baldwin organ
Winston Kock’s Baldwin Organ Model Five 1947

The Baldwin organ was an electronic organ, many models of which have been manufactured by the Baldwin Piano & Organ Co. since 1946. The original models were designed by Dr Winston E. Kock who became the company’s director of electronic research after his return from his studies at the Heinrich-Hertz-Institute, Berlin, in 1936. The organ was a development of Kock’s Berlin research with the GrosstonOrgel using the same neon-gas discharge tubes to create a stable, affordable polyphonic instrument. The Baldwin Organ were based on an early type of subtractive synthesis; the neon discharge tubes generating a rough sawtooth wave rich in harmonics which was then modified by formant filters to the desired tone.

Tone modifying circuits of the Baldwin organ
Tone modifying circuits of the Baldwin organ

Another innovative aspect of the Baldwin Organ was the touch sensitive keyboard designed to create a realistic variable note attack similar to a pipe organ. As the key was depressed, a curved metal strip progressively shorted out a carbon resistance element to provide a gradual rather than sudden attack (and decay) to the sound.  This feature was unique at that time, and it endowed the Baldwin instrument with an unusually elegant sound which captivated many musicians of the day.

“How did it sound? I have played Baldwin organs at a time when they were still marketed and in my opinion, for what it is worth, they were pretty good in relative terms.  That is to say, they sounded significantly better on the whole than the general run of analogue organs by other manufacturers, and they were only beaten by a few custom built instruments in which cost was not a factor.  It would not be true to say they sounded as good as a good digital organ today, but they compared favourably with the early Allen digitals in the 1970’s.  Nor, of course, did they sound indistinguishable from a pipe organ, but that is true for all pipeless organs.  To my ears they also sounded much better and more natural than the cloying tone of the more expensive Compton Electrone which, like the Hammond, also relied on attempts at additive synthesis with insufficient numbers of harmonics.”

From ‘Winston Kock and the Baldwin Organ; by Colin Pykett

Electronic Generator of the earlt model Baldwin Organ
Electronic Tone Generator of the early model Baldwin Organ showing neon gas-discharge tube oscillators.

Kock’s 1938 Patent of the Baldwin organ

Winston Kock playing an early experimental design for an electric instrument
Winston Kock playing his early experimental electronic instrument 1932

Winston E. Kock Biographical Details:

Winston Kock was born into a German-American family in 1909 in Cincinnati, Ohio. Despite being a gifted musician he decided to study electrical engineering at Cincinnati university and in his 20’s designed a highly innovative, fully electronic organ for his master’s degree.

The major problem of instrument design during the 1920’s and 30’s was the stability and cost of analogue oscillators. Most commercial organ ventures had failed for this reason; a good example being  Givelet & Coupleux’s  huge valve Organ in 1930. it was this reason that Laurens Hammond (and many others) decided on Tone-Wheel technology for his Hammond Organs despite the inferior audio fidelity.

Kock had decided early on to investigate the possibility of producing a commercially viable instrument that was able to produce the complexity of tone possible from vacuum tubes. With this in mind, Kock hit upon the idea of using much cheaper neon ‘gas discharge’ tubes as oscillators stabilised with resonant circuits. This allowed him to design an affordable, stable and versatile organ.

Kock's Sonar device during WW2
Kock’s Sonar device during WW2

In the 1930’s Kock, fluent in German, went to Berlin to study On an exchange fellowship (curiously, the exchange was with Sigismund von Braun, Wernher von Braun’s eldest brother –Kock was to collaborate with Wernher twenty five years later at NASA) at the Heinrich Hertz Institute conducting research for a doctorate under Professor K W Wagner. At the time Berlin, and specifically the Heinrich Hertz Institute, was the global centre of electronic music research. Fellow students and professors included; Jörg Mager, Oskar Vierling, Fritz Sennheiser, Bruno Helberger, Harald Bode, Friedrich Trautwein, Oskar Sala and Wolja Saraga amongst others. Kock’s study was based around two areas: – improving the understanding of glow discharge (neon) oscillators, and developing realistic organ tones using specially designed filter circuits. 

Kock worked closely with Oskar Vierling for his Phd and co-designed the GrosstonOrgel in 1934 but disillusioned by the appropriation of his work by the newly ascendant Nazi party he decided to leave for India, sponsored by the Baldwin Organ Company arriving at the Indian Institute of Music in Bangalore in 1935.

Returning from India in 1936, Dr Kock became Baldwin’s Director of Research while still in his mid-twenties, and with J F Jordan designed many aspects of their first electronic organ system which was patented in 1941.

NASA
Winston E Kock (L) as the first Director of Engineering Research at NASA

When the USA entered the second world war Kock moved to Bell Telephone Laboratories where he was involved on radar research and specifically microwave antennas. In the mid-1950’s he took a senior position in the Bendix Corporation which was active in underwater defence technology. He moved again to become NASA’s first Director of Engineering Research, returning to Bendix in 1966 where he remained until 1971 when he became Acting Director of the Hermann Schneider Laboratory of the University of Cincinatti. Kock Died in Cincinatti in 1982.

 Winston Kock was a prolific writer of scientific books but he also wrote fiction novels under the pen name of Wayne Kirk.

Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950's
Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950’s
Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950's
Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950’s
lenses
Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950’s

Sources:

Hugh Davies. The New Grove Dictionary of Music and Musicians

http://www.pykett.org.uk/drkock.htm

The ‘Saraga-Generator’ Wolja Saraga, Germany,1931

The Saraga Generator
The Saraga Generator. Photo; Saraga family archives

The ‘Saraga-Generator’ was developed by the electrical engineer and physicist Wolja Saraga at the Heinrich-Hertz Institut Für Schwingungsforschung (HHI) in Berlin, Germany around 1931. The Saraga Generator was an unusual photo-electrical vacuum tube instrument originally designed to be used for theatrical production where the sound would be triggered by movement in front of the instrument.

Wolja Saraga working on the 'Saraga Generator' at the HHI, Berlin in 1932
Wolja Saraga working on the ‘Saraga Generator’ at the HHI, Berlin in 1932 (Photo; Saraga family archives )

The original instrument consisted of a single photoelectric cell mounted on the white painted inside surface of a box with a small ‘V’ shaped slit cut on one face. A low voltage neon lamp was placed at some distance from the box on a stage and the performers movements interrupting the light beam causing variations in pitch in a tone generated using the well established  heterodyning effect of two vacuum tubes. Later versions were designed to be played in a way similar to the Theremin with one hand held in the air controlling the pitch by interrupting the light beam –Envelope and timbre were controlled by manipulating a hand held switching device, the overall volume being driven by a foot pedal. The Saraga Generator was monophonic with a tonal range of four octaves.

The Saraga Generator was patented in 1932 and demonstrated at the Berlin Radio Exhibition (IFA Berlin) in the same year.

Wolja Saraga. Berlin, 1930s
Wolja Saraga. Berlin, 1930s

Saraga took a version of the Generator to London after he left Berlin for the UK in 1938 ( He also brought a Volkstrautonium purchased as a promotional model from Telefunken) . He gave several presentations of the instrument for the Institute of Musical Instrument Technology (Holloway Rd, London N7) in May 1945 entitled “A Homophonic or single-note electronic musical instrument with a photo electric cell as playing manual – demonstration of an experimental model” and searched for commercial applications for the instrument including film soundtrack music and musical therapy for blinded war veterans.

Wolja Saraga working at the HHI, Berlin 1932. (Photo; TU Archives, Berlin)
Wolja Saraga working at the HHI, Berlin 1932. (Photo; TU Archives, Berlin)

Difficulties in sourcing electronic components in post-war Britain hampered development of the instrument which was eventually overtaken by more sophisticated and versatile electronic instruments of the 1950s

 

Wolja Saraga (Born:3rd September 1908 Berlin; Died 15. February 1980, London)
Wolja Saraga (Born:3rd September 1908 Berlin; Died 15. February 1980, London)

Wolja Saraga: Biographical Notes

Saraga was a German Jewish Physicist, born in Berlin to a Romanian father and a Russian mother. Saraga studied telecommunications at the Heinrich Hertz Institute (‘Heinrich-Hertz Institut Für Schwingungsforschung’ or ‘HHI’) at the Technical University, Berlin under Prof Gustav Leithäuser – alongside luminaries such as Oskar VierlingHarald Bode , Winston Kock and Friedrich Trautwein.

It was during his time at the HHI that he began investigations into electronic musical instruments, his published papers detailing; a dual oscillator Aetherophone or ‘Theremin‘ , a ‘Poly-rhythmic Electronic Musical Instrument’ , The workings of the Volkstrautonium and his design for a photo-optical instrument, the ‘Saraga Generator’ first built in 1931. Saraga became a research assistant at the institute and later  a lecturer from1929-1933. He also studied physics and mathematics at the Humboldt University of Berlin , where he was awarded a Dr. phil. in physics in 1935.

saraga_presse_kart
Wolja Saraga’s ticket for the 1936 ‘Great-German Radio Exhibition’ (image; Saraga Family Archive 2016)

During his time in Berlin, Saraga was very energetic in promoting the potential of electronic music; He made several public presentations and demonstrations of electronic instruments including Theremins, Trautoniums and his own ‘Saraga Generator’. Saraga was also present playing the ‘Saraga Generator’ at the 1932/3 International Funkaustellung (IFA) where the first ever electronic musical orchestra performed (Das ‘Orchester der Zukunft’).

"Electric Concerts" with the electroacoustic "orchestra of the future", 1932/1933 On the occasion of the 9th and 10th IFA in Berlin 1932 and 1933 for the first time found concerts with "Electric Music" instead. They played by the so-called "Orchestra of the future" all electroacoustic musical instruments then available. The "Elektischen concerts" made at the time an exceptional level of interest and broad support in the public, as the cooperating with private Theremingerät Erich Zitzmann-Zerini [second right] the engineer Gerhard Steinke told while gave him this original image. The orchestra consisted of two theremin instruments Trautonium [by Trautwein], Heller desk [of B. and P. Helberger Lertes], a neo-Bechstein grand piano [for suggestions of O. Vierling, S. Franco, W. Nernst and H . Driescher], Vierling piano [electro Acoustic piano by O. Vierling], electric violin, electric cello and Saraga generator [a light-electric device by W. Saraga, in principle, similar to the Theremingerät]. Photo: archive Gerhard Steinke
A concert by the electroacoustic “Orchestra of the Future” at the 9th and 10th IFA in Berlin 1932. Consisting of: (L-R) Bruno Hellberger playing his ‘Hellertion’, unknown playing the ‘Electric Cello’, unnown playing the ‘Hellertion’ (?) Oskar Sala playing the ‘Volkstruatonium’, unknown playing the ‘Neo Bechstein Electric Piano’, Oskar Vierling playing the ‘Electrochord’ unknown playing the ‘Electric Violin’ Wolja Saraga (back of stage) playing the ‘Saraga Generator’ Erich Zitzmann-Zerini with the ‘Theremin’ Unknown playing the ‘Volkstrautonium’ (Photo: archive Gerhard Steinke)
It became clear to Saraga in 1935-6 that as a Jewish scientist he would have no future in the new National Socialist German Reich and began to apply to leave the country, first of all to Switzerland and then to the UK. Saraga finally left Berlin in 1938 at the age of 29. he was initially held for six months on the Isle Of Man Hutchinson Camp as a German internee but was given a position working for the ‘Telephone Manufacturing Company’ (or ‘TMC’) in St Mary’s Cray, Kent where, despite his unhappiness at his employers lack of interest in research, he remained until 1958.

A press card for a presentation by W.Saraga entitled 'Electronic Music'
A press card for a presentation by W.Saraga entitled ‘Electric Music – a presentation and musical demonstration of the Trautonium’. Berlin 1933. (Photo; Saraga Family Archive 2016)

Saraga then joined The Associated Electrical Industries Research Laboratory in Blackheath, London as a Research Scientist and Group Leader where he specialised in telephony filter design. In 1962, Saraga’s key contributions were recognised by the award of the Fellowship of the Institute of Electrical and Electronics Engineers, ‘for contributions to network theory and its application in communications’. In 1972, Saraga moved full time to Imperial College, London where he became a postgraduate lecturer and researcher in network theory and mathematics.

Saraga wrote a number of books and filed several patents on network theory and telephony.


Sources

Archives of the Heinrich Hertz Institute/Heinrich-Hertz Institut Für Schwingungsforschung, Berlin, Germany

CIRCUIT THEORY AND APPLICATIONS, VOL. 8, 341 (1980) Obituary of Wolja Saraga by J. 0. SCANLAN

Saraga, W. “Elektrische Klangfarbenerzeugung, in FUNK-Bastler” 1932, Heft 38, S. 594, zit. nach STANGE-ELBE 1993a, S. 15( “Electrical Timbre generation, into radio hobbyist” )

[Wolja] Saraga: Die “tönende Handschrift”, in: Funktechnische Monatshefte 1933, H. 10, S. 403-406, hier S. 406

W. [Wolja] Saraga: An Electronic Musical Instrument with a Photo-Electric Cell as Playing Manual, in: Electronic Engineering 17 (1945), Juli, S. 601-603

Obituary: IEEPROC, Vol. 128, Pt. G, No. 4, AUGUST 1981

Documents from the Saraga Family Archive 2016

The ‘Electrochord’ and the ‘Kraft Durche Freude Grosstonorgel’. Oskar Vierling & Winston E. Kock, Germany, 1933

Oskar Vierling  born: 24. January 1904 in Straubing, Germany -  Died 1986
Oskar Vierling born: 24. January 1904 in Straubing, Germany – Died 1986

Oskar Vierling was an important figure in the development of electronic musical instruments and electro-acoustic instruments during the 1930’s to the 1950’s. Vierling was a trained electronic engineer who, after studying at the Ohm Polytechnic, Nuremberg filed over 200 patents. In 1935 Vierling moved to Berlin where he received his doctorate in physics at the Technical University and then continued to work at the  Heinrich-Hertz-Institute of Vibration Research (HHI) under Fritz Sennheiser.

The Electrochord

Electrochord at the Deutsches Museum in Munich
Electrochord at the Deutsches Museum in Munich

Vierling’s first musical instrument was the ‘Electochord’ an electro-acoustic piano designed and built in collaboration with  Benjamin Franklin Mießner and was commercially marketed by August Förster Piano Factory in Lõbau. The Elechtrochord worked by converting resonating piano strings via electro-magnets into electronic sounds in a similar way to Vierling’s Neo-Bechstien Piano (an early electro-acoustic piano designed by Vierling and Walther Nernst in 1931).

Vierling
Oskar Vierling working on the first version of the ‘Electrochord’

The vibrations from a normal piano string were recorded and amplified electronically. Various register circuits enabled the player to change the sound’s timbre ranging from “a delicate Spinettte, the lyrical tone of a parlour organ to the powerful sound emission of a grand piano”. A restored model of the Electrochord is kept in the music collection of the Deutsches Museum in Munich. During the early 1930’s Vierling worked closely with Jorg Mager at his Darmstadt research centre on the construction of Klaviatursphäraphon amongst other instruments.

Jorg Mager and Oskar Vierling working on the Sphäraphon at Mager's laboratory in Darmstad.
Jorg Mager and Oskar Vierling working on the Sphäraphon at Mager’s laboratory in Darmstadt.
The Neo-Bechstien Electro-acoustic piano
The Neo-Bechstien Electro-acoustic piano

The ‘Kraft Durche Freude Grosstonorgel’

Keyboard fo the Grosstonorgel
Keyboard of the Kock-Vierlin KDF Grosstonorgel

Vierling went on to develop another large electronic organ; the ‘Grosstonorgel’ (together with  Karl Willy Wagner and the American engineer Winston E. Kock both at the Heinrich-Hertz-Institute. Winston Kock came to Berlin in 1933 as an exchange student at the Technical University of Berlin where he built an electronic organ for his diploma thesis. Since vacuum tubes were very expensive, he designed an instrument that relied instead on the smaller and cheaper neon tubes for the oscillators . He filed a patent for a use of inductive neon oscillators and sound-colour generation. It’s likely that the Grosstonorgel used similar neon or vacuum tube technology.

Joseph Goebbels at the GrosstonOrgel
Joseph Goebbels at the GrosstonOrgel. HHI Berlin 1935
The workshop at the HHI. The GroostonOrgel being built.
The workshop at the HHI. The GrosstonOrgel being built.
Winston Kock (seated) and Oskar Vierling at the keyboard of their Grosstonorgel.
Winston Kock (seated) and Oskar Vierling at the keyboard of their Grosstonorgel.

Work on the Grosstonorgel was funded by the National Socialist ‘Kraft Durche Freude’ cultural association (‘Strength Through Joy’  Set up as a tool to promote the advantages of National Socialism to the people,which became the world’s largest tourism operator of the 1930s) . The Grosstonorgel, as well as a Vierling designed 500 watt PA system, was a one-off instrument specifically designed to provide the musical accompaniment to the 1936 Olympic Games. A year later the instrument was also used at the Reich Party Congress of the National Socialist Party in Nuremberg. The new improved model was said to be able to produce “beautiful bell sounds” to accompany the Nazi propaganda spectacle.

sennheiser_vierling_gto
Fritz Sennheiser (seated) and Oskar Vierling with the kdf Grosstonorgel. HHI Berlin 1935.
The first broadcast of a concert consisting exclusively of electric instruments orchestra, organized by the "Radio Hour ', Berlin, 19 10 1932  The instruments were a Neo-Bechstein piano, Trautonium Heller ion, electric violin and cello, and two theremin instruments. Behind each instrument the corresponding speaker
The first electronic group? an purely electronic orchestra  organised by  “Radio Hour ‘ broadcast, Berlin, 19.10.1932. The instruments were a Neo-Bechstein piano, Trautonium, Hellertion, electric violin, electric cello, and two Theremins with a corresponding loudspeaker behind each instrument.
Jospeh Goebels tries the Grosstonorgel. HHI Berlin 1935.
Jospeh Goebels tries the Grosstonorgel. HHI Berlin 1935.

Vierling had joined the National Socialist Party (NDSAP)  in the late 1930s and in 1941 established the Vierling research group  with a staff of 200 employees co-operating directly with the Wermacht high command. The secret research establishment was located in Burg Feuerstein, Ebermannstadt disguised as a hospital with red-cross emblems on the roof to avoid allied bombing.

Burg Feuerstein home of the secret Vierling Research Group
Burg Feuerstein home of the secret Vierling Research Group

Research included audio-controlled torpedoes (codenamed “wren” and “vulture” where the torpedoes located their target from the propeller noises of enemy ships ), encryption technology (with Erich Hüttenhain and Erich Fellgiebel on a voice encryption method of the legendary SZ 42 cipher ), anti radar submarine coating (codenamed “chimney sweep”) as well as radio control equipment and electronic calculators. The Vierling company still exists as a family run business in Ebermannstadt.

The remains of the Vierling after Allied bombing in 145
The remains of the Vierling research laboratories in Burg Feuerstein after Allied bombing in 1945

After the fall of Nazi Germany the Burg Feuerstein castle was sealed-off by the British troops. Vierling revealed his previously secret work which he had hidden in secret walled off chambers in the castle and collaborated openly with the new occupiers:

“Another major opportunity arose in the capture of the Feuerstein Laboratory on a small mountain near Ebermannstadt, which conducted research and preliminary development of experimental communications equipment. Its director Dr. Oskar Vierling, was picked up and interrogated.  He proved cooperative, reassembled most of his staff and put them back to work, allowing TICOM to exploit the target.”

Report from TICOM Team 1.

At this time Vierling met the British mathematician and the ‘Father of Computing’  Alan Turing (then working for TICOM ; Target Intelligence Committee), to discuss details of encryption and specifically the Enigma machine and Vierlings work on encrypted radio transmissions. Vierling then worked at Gehlen Organisation (an American run espionage organisation employing hundred of ex-Nazis ) on the design of bugging devices for the American occupation (echoing the career trajectory of Lev Termen) and from 1949 to 1955, having escaped the De-Nazification process through his collaboration with the occupying powers, became professor of physics at the Philosophical-Theological College in Bamberg, Germany. Vierling continued working at Vierling AG in Ebermannstadt and died in 1986.

Vierling research laboratories in 1060
Vierling research laboratories in 1960

 

Kock and Vierling in Berlin

Excerpt from Hans-Joachim Braun’s ‘Music Engineers. The Remarkable Career of Winston E. Kock, Electronic Organ Designer and NASA Chief of Electronics’

“In the spring of 1933, after finishing his studies in Cincinnati, Kock became exchange fellow at the Technical University of Berlin. He had heard of Karl Willy Wagner’s work and wanted to conduct doctoral research with him at the Heinrich Hertz Institute. Kock’s counterpart as an exchange student from Berlin to Cincinnati was Sigismund von Braun, Wernher von Braun’s eldest brother. In Berlin Kock wrote a Ph. D. thesis on oscillations in inductive glow discharge circuits and, with Oskar Vierling, another student of Wagner’s, designed an improved electronic organ on the formant principle. Oskar Vierling, Kock’s collaborator on the Kock-Vierling organ, had studied electrical engineering at an engineering school and in 1925 joined the Laboratory of the German Research Institute for Telegraphy headed by Karl Willy Wagner. In 1928 he followed Wagner as his assistant to the newly founded ‘Institute for Vibration Research’ conducting acoustic research and designing electrified pianos and electronic organs. Together with the Nobel Laureate Walter Nernst he in 1931 designed the Neo-Bechstein piano, an electrostatic piano and from 1928 to 1935 developed his Electrochord for the piano manufacturer Förster. The National Socialist Strength through Joy organization sponsored Vierling’s ‘Strength through Joy Organ’ which was played at the Olympic Games in Berlin in 1936. This enlarged and improved version of the Kock-Vierling model created a sensation as did his electrically generated bell sounds which he presented at the National Socialist Party Rally in Nuremberg a year later.8 Fascination by technology, electricity and electronics,surprising effects, glorious sounds, this was food for the masses and much appreciated by the party propagandists. Vierling’s mentor Karl Willy Wagner must have watched his former assistant’s success with very mixed feelings, having himself been forced to resign from his directorate of the Heinrich Hertz Institute in 1936. There is an irony in the fact that Kock,who played a significant role in the US War effort during World War II, contributed, although unintentionally, to enhancing Nazi propaganda efforts.”


Sources

Peter Donhauser ‘THE FIRST ELECTRO-ACOUSTICAL PIANO IN GERMANY. THE NEO-BECHSTEIN AND IT’S RESTORATION’ Vienna Museum of Technology
Mariahilfer Strasse 212, 1140 Vienna

Hans-Joachim Braun ‘Music Engineers. The Remarkable Career of Winston E. Kock, Electronic Organ Designer and NASA Chief of Electronics’

‘Tarnname Schornsteinfeger’ by Thadeusz, Frank ‘Was wurde im Geheimlabor der Nazis auf Burg Feuerstein erforscht? Der Erfinder Oskar Vierling soll dort akustische Leitsysteme für die Wehrmacht entwickelt haben.’ Der Spiegel 18.04.2011

Wolfgang Voigt: Oskar Vierling, ein Wegbereiter der Elektroakustik für den Musikinstrumentenbau, in: Das Musikinstrument vol. 37, Nr 1/2, 1988, 214-221 und Nr. 2/3, 172-176.

http://www.vierling.de/

http://www.august-foerster.de

Final Report of TICOM Team 1. National Archives and Record Administration, College Park (NARA). RG 457, Entry 9037 (Records of the NSA), Box 168.