Charles Hamm, Lejaren Hiller, Salvatore Martirano, Herbert Brün, James Gaburo at the EMS, Toronto, 1965
PIPER was one of the earliest hybrid performance system allowing composers and musicians to write and edit music in real time using computers and analogue synthesisers. The system was developed by James Gabura & Gustav Ciamaga Who also collaborated with Hugh Le Caine on the ‘Sonde’) at the University of Toronto (UTEMS) in 1965. With computing technology in 1965 being to weak to synthesise and control sounds in real-time a work-around was to leave the scoring and parameter control to the computer and the audio generation to an external analogue synthesiser. The PIPER system consisted two Moog oscillators and a custom built amplitude regulator to generate the sound and an IBM 6120 to store parameter input and to score the music. The computer would read and store the musicians input; keyboard notes, filter changes, note duration and so-on and allow the user to play this back and edit in real-time.
By the 1980’s such large hybrid analogue-digital performance systems like PIPER and Max Mathew’s GROOVE were obsolete due to the advent of affordable, microcomputers and analogue/digital sequencer technology.
The Robb Wave Organ designed by Morse Robb in Belleville, Ontario was an early pre-cursor, and said to be musically superior, to the Hammond Organ. The instrument attempted to reproduce the sound of a cathedral pipe organ by amplifying sounds generated by a similar tone-wheel mechanism. Robb based his tone-wheel design on that of Melvin Severy’s ‘Choralcello’ but with the addition of amplification – which wasn’t available to Severy at the time.
Frank Morse Robb
“…Such an instrument as his, (Severy’s ‘Choralcello’) however, is both practically and theoretically impossible, as without amplification, far greater than the microphone type he suggests, nothing but the faintest trace of tones could be heard. The mere addition of amplification to his instrument would not be invention. If this were done, moreover, the instrument could not be made to function musically as the circuit and wiring arrangement set forth in his patent-would preclude that possibility due to internal resistance in the magnets. Every impulse generated by the tone disc would be absorbed in the circuits to such an extent that amplification would be impossible.”
Morse Robb’s miniaturised tone wheels of the Wave Organ. From the collection of the Canada Science and Technology Museum, Ottowa, Ontario Canada.
Robb’s aim was to miniaturise elements of previous huge tone-wheel designs (‘Coralcello‘ of 1909 and ‘Telharmonium‘ 1897-1917) to create a practical, easy to maintain and affordable electronic organ. This was done by reducing the size and number of the tone wheels by adding a system of gears and increasing the number of notes on each wheel by ‘doubling and redoubling the wave forms on the discs on one shaft’ . The instrument was equipped with twelve tone wheels representing each note, the ‘character’ or timbre of note – corresponding to organ stops and photographed from a cathode ray oscillograph – plus the harmonics of each fundamental note. The variation in pitch of each note was achieved by changing the speed of the tone wheel’s rotation giving the Wave Organ a total of five octaves. The tone wheels spinning within a magnetic field generated a voltage output of each note which was made audible by being passed to a valve amplifier and loudspeaker.
Significantly the Wave Organ was unique in that it tried to replicate real organ sounds by cutting the tone wheels to the shape of a photographic image of the waveform of a church organ – rather than mechanically reproducing and combining ‘pure’ tones and overtones like the Telharmonium and Hammond Organ. In this way the Wave organ can be seen as one of the earliest analog sampling
The prototype Wave Organ was built in 1927 and premiered in November of the same year at the Toronto Daily Star’s CFCA radio studio in Belleville and patented in 1928 (1930 in the USA). Robb planned to market the instrument by arranging a production contract with the General Electric Company in Schenectady, NY and later, organ builders Casavant Frères in Canada, however the worsening economic troubles of the 1930s depression permanently stalled the agreements in the spring of 1931 .
Undaunted by the commercial failure of his first prototype, Robb produced a new, two manual, 32 note version of the Wave Organ in April 1934 and launched the ‘ Robb Wave Organ Company’- incorporated on 21 September 1934 – to market and sell the instrument. The first productions models became available in July 1936 and was publicly demonstrated at Eaton’s department stores in Toronto and Montréal. Despite an initial positive reaction Robb was unable to obtain funding for further production and in 1938 he abandoned the project – Only thirteen models were ever sold and the Wave Organ was taken off the market in 1941.
The Robb Wave Organ was more expensive than other electronic organs of the period – notably the American Hammond Organ, which used an almost identical tone-wheel technology – and sales suffered because of World War II. The last remaining Wave Organ prototype is preserved at the Canada Science and Technology Museum in Ontario.
Second version of Morse Robb’s ‘Wave Organ’ c1936
Michael J. Murphy professor RTA School of Media talks about the Robb Wave Organ
Frank Morse Robb
(born 28 January 1902 in Belleville, ON; died 5 August 1992 in Belleville)
Robb studied at McGill University from 1921 to 1924 and then returned to Belleville where in 1926 began research on the Robb Wave Organ. After the commercial failure of the Wave Organ, Robb applied his talent as an inventor to devices for the packing of guns during the Second World War. He became vice-president of his brother’s packing company and won acclaim as a silversmith. He also wrote a Sci-Fi -post nuclear holocaust novel Tan Ming (1955) under the pseudonym Lan Stormont (“An amusing fantasy in which a department store window dresser falls in love with a robot mannequin and manages to conjure into its body the soul of a princess named Tan Ming from a postholocaust future.”).
‘Tan Ming’ by Lan Stormont/Morse Robb 1955
Sources
‘Frank Morse Robb’s Wave Organ’ by Michael Murphy and Max Cotter. eContact! 17.3 — TIES 2014: The 8th Toronto International Electroacoustic Symposium
Canada Science and Technology Museum. ingeniumcanada.org
‘Encyclopedia of Music in Canada’. www.thecanadianencyclopedia.ca
‘New worlds of sound; electronics and the evolution of music in Canada’ Katharine Wright.Canada Science and Technology Museums Corporation Société des musées de sciences et technologies du Canada Ottawa, Canada
2013
“My primary concern was making an electronic instrument that was musically expressive.”
Hugh Le Caine the Canadian composer, physicist and inventor was the producer of innovative instruments and technologies including many custom built electronic instruments and pioneering work with multi-track tape recorders, he was also at the forefront of the development of electronic music studios and an early advocate of “user-friendly” approaches to new technologies. Unlike better-known contemporaries such as Robert Moog, LeCaine never saw his major inventions developed directly into complete commercial products, most were one off devices which although were never commercial successes had great influence on the world of electronic music. Among his many creations were the “Electronic Sackbut” and the “Sonde”.
Sackbut
The Sonde was developed by Hugh LeCaine at the University of Toronto in 1945. The instrument was a touch sensitive keyboard voltage-controlled synthesizer with pitch, waveform, and formant controllers. A one-off, custom built for the University of Toronto, Ottowa, The Sonde had 30 fixed frequency oscillators arranged in a 10 X 20 matrix used to create 200 sine waves whose frequencies were spaced at 5hz intervals: from 5-1khz. Each frequency was routed to a key of a touch sensitive polyphonic keyboard.
Josef Tal at the electronic music studio Jerusalem
Hugh Le Caine (May 27, 1914 – July 3, 1977)
Le Caine was brought up in Port Arthur (now Thunder Bay) in northwestern Ontario. After completing his Master of Science degree from Queen’s University in 1939, Le Caine was awarded a National Research Council of Canada (NRC) fellowship to continue his work on atomic physics measuring devices at Queen’s. He worked with the NRC in Ottawa from 1940 to 1974. During World War II, he assisted in the development of the first radar systems.
On an NRC grant he studied nuclear physics from 1948 to 1952 in England. At home he pursued a lifelong interest in electronic music and sound generation. In 1937, Le Caine designed an electronic free reed organ, and in the mid-1940s, he built the Electronic Sackbut, now recognised to be one of the first synthesizers. After the success of public demonstrations of his instruments, he was permitted to move his musical activities to the NRC and to work on them full-time in 1954.
Over the next twenty years, he built over twenty-two different new instruments. Between 1955 and his retirement from the NRC in 1973, Le Caine produced at least fifteen electro acoustical compositions and created a score of new devices and also presented his ideas and inventions to learned bodies and the general public. But while Le Caine did get excellent responses from both the learned bodies and the public, he did not get a satisfactory response from industry. Fortunately, a few people did eventually come into Le Caine’s life to make him feel his efforts were of some value. One of these people was Israeli composer Josef Tal. In the summer of 1958, Tal had travelled to Ottawa under a Unesco grant to visit major electronic music studios. Tal grew very excited about the instruments that Le Caine had built, but he did not realize what this meant to Le Caine until the next day while Le Caine, Tal, and several technicians were having lunch in a small restaurant. Tal noticed that, not only had Le Caine been rather silent on this day, but on close inspection at the table, Le Caine had tears running down his cheeks and falling silently into his soup. When an opportunity arose, Tal delicately asked one of the technicians about this and was told that Le Caine had felt no composer in Canada had a use for his instruments and that Tal was the first composer who had shown any interest in his work.
In 1962 Le Caine arrived in Jerusalem to install his Creative Tape Recorder in the Centre for Electronic Music in Israel, established by Josef Tal. Le Caine also collaborated in the development of pioneering electronic music studios at the University of Toronto in 1959 and at McGill University in 1964.
Sources:
“The Sackbut Blues : Hugh Le Caine, pioneer in electronic music” Young, Gayle, National Museum of Science and Technology, Canada 1989 . ISBN/ISSN :0660120062