The ‘Emiriton’ A. Ivanov, V.A. Kreytser & Andrey Rimsky-Korsakov, Russia, 1943

Late 1950's version of the Emiriton

Late 1950′s version of the Emiriton

The Emiriton was an example of a series of finger-board electronic instruments developed in the Soviet Union in the 1930′s, inspired perhaps by Leon Termen’s avoidance of a standard keyboard with his Theremin. Other instruments included V.A.Gurov’s (a former colleague of Leon Termen) “Neo-Violena“(1927) the ”Sonar“(1930) and the Volodin’s “Ekvodin“ (1931). Designed by A. Ivanov and A.Rimsky-Korsakov, The Emiriton was a originally a fingerboard instrument allowing the use of glissando effects, with later models incorporating a standard keyboard. The Emiriton generated sound from neon-tube oscillators and was able to replicate sounds such  as  the bassoon, violin, cello and clarinet.

Rimsky Korsakov

Andrey Vladimirovich Rimsky-Korsakov

Biographical Information: Andrey Vladimirovich Rimsky-Korsakov

Andrey Vladimirovich Rimsky-Korsakov, grandson of the famous Russian composer,studied at the Leningrad Conservatory and the Leningrad Polytechnical Institute. His combination of musical and technical knowledge allowed Andrey Vladimirovich to work successfully at the Research Institute of Musical Industry organized by Academician N.N.Andreyev. From 1932 he collaborated with the engineer A.A.Ivanov to construct one of the earliest Russian electric musical instruments: the Emiriton. In early 1941, Rimsky-Korsakov moved to the Leningrad Physicotechnical Institute of the Academy of Sciences of the USSR, where he began his investigations in hydroacoustics. In 1942, he joined the Navy and, during the war was involved in designing and testing acoustic mines. After the war, Rimsky-Korsakov returned to his studies in musical acoustics at the Leningrad Electrotechnical Institute of Communication, and later at the Acoustics Institute of the Academy of Sciences of the USSR, Moscow. In 1960, Rimsky-Korsakov established the Department of Electroacoustics and Ultrasonics at the Moscow Mining Institute focussing on acoustical measurements, and noise and vibration control and technological processes of low-frequency acoustic vibrations.


Sources:

Time, Volume 44. 1944

Music of the Repressed Russian Avant-garde, 1900-1929 By Larry Sitsky

Soviet Physics: Acoustics, Volume 36

The ‘Radio Harmonium’ Sergeĭ Nikolaevich Rzhevkin, Russia, 1925

One of the earliest electronic instruments of the Soviet period, the Radio (or ‘Cathodic’) Harmonium was a three voice polyphonic cathode vacuum tube instrument controlled by a manual keyboard, designed for playing atonal music by the audio physicist Sergeĭ Nikolaevich Rzhevkin (1891-1981). The instrument was used by the philosopher Ivan Orlov in his investigations of aural phenomena.


Sources:

‘A course of lectures on the theory of sound’ Sergeĭ Nikolaevich Rzhevkin. Pergamon Press, 1963

Orlov, I. E. 1926e. “Experiments with Rzhevkin’s cathode harmonium.”A Collection of Articles in Musical Acoustics (Russian),State Institute of Musical Science, 1925, 1.

The ‘Neo Violena’ Vladimir A Gurov, V.I. Volynkin & Lucien M. Varvich. Russia 1927

Designed by the engineers Vladimir A Gurov and V.I. Volynkin with the musical input from the composer Lucien M. Varvich, the Neo Violena was manufactured in Russia in 1927 and seems to have reached the USA during sometime during the 1930’s. The Neo Violena, as it’s name suggests, was a monophonic violin like instrument. The sound was generated by the player pressing a metal string to contact a metal conductive fingerboard; the position of the finger on the string determining the pitch and finger pressure varying the volume. Sound was produced from a heterodyning vacuum tube. The instrument was said to be capable of “producing a pleasant and ‘juicy’ sound that resembled different symphony orchestra instruments and possessed a wide range of sounding shades and timbres.”

“ On Thursday evening at the School House, A. R. Hamilton, president of the Hamilton College of Commerce at Mason City will give an address on “How the “Violena” Is Played” . The “violena” a musical instrument that is a whole orchestra in one, has been perfected at Leningrad, Russia, by the inventor, Vladimir A. Gurov and the young composer, Lucien M. Varvich. The player twirls a dial and the violena turns into a bass viol, another twirl and it becomes a guitar, still another and it is a flute, and so on. Besides its ability to reproduce faithfully almost- any musical instrument.”
The Bode Bugle. Page 5 USA. 28 May 1937.


Sources

The ‘Companola’ (‘Kompanola’) and ‘Noisephone’ Igor Simonov, Russia, 1936

The engineer and physicist Igor Simonov was a colleague of Lev Termen at the ‘USSR Sound Recording Institute’, a sound studio laboratory that supplied real-time synthesised sounds for Moscow Radio in the 1930’s. Simonov collaborated with Termen on a number of projects including designs and instructions for home built Theremins but also built several of his own musical devices including a monophonic vacuum tube electronic keyboard instrument called the ‘Companola’ (1936) and the ‘Noisephone’, an electronic device for generating percussive and everyday sound effects – notably, the Noisephone was used to imitate the howling of the wind in the movie “The Forty First” (1957).


Sources:

THE HISTORY OF ELECTRO-MUSICAL INSTRUMENTS IN RUSSIA IN THE FIRST HALF OF THE TWENTIETH CENTURY. Irina Aldoshina, Ekaterina Davidenkova. Saint-Petersburg University of Humanities and Social Sciences, Russia

‘Theremin: Ether Music and Espionage’. Albert Glinsky

The ‘Vibroexponator’ Boris Yankovsky, Russia 1932

Boris yankovsky in 1939

Boris Yankovsky in 1939

Boris Yankovsky (1904-1973) worked with the Multzvuk group as a pupil of Arseney Araamov at Mosfilm, Moscow from 1931-32. However he grew disenchanted with what he considered to be an over simplified way of approaching acoustics. Yankovsky realised that pure uniform  waveforms do not represent timbre and that a more complex spectral approach needed to be developed. In 1932 Yankovsky left Multzvuk to pursue his ideas of spectral analysis, decomposition and re-synthesis . His project was based on his belief that it is possible to develop a universal language of sounds using combinations of hand drawn spectral ‘sound objects’ (similar to the much later cross-synthesis and phase-synthesis techniques).

“I found the idea of synthesis while I was laboriously working on ‘drawn sound’. And this is the chain of my consideration:
The colour of the sound depends on the shape of the sound wave;
Graphical colour of the sound wave could be analysed and represented as the Fourier series of periodic functions (sine waves);

Consequently the sound wave could be re-synthesised back with the same set of sine waves. Nobody did this before the invention of graphical (drawn) sound just because there was not a technical means and  methodology for sound reproduction from such graphical representations of sound. As with electrons (the neutrons and protons) the number of which defines the quality of the atom, so do the sine waves define the quality of the sound – it’s timbre.

Drawn scale with angles to create pitch shift

Drawn scale with angles to create pitch shift

The conclusion: why not initiate a  new science – synthetic acoustics?
It would make sense if we could define (at least in draft) a sort of periodic table of Sound Elements, like Mendeleev’s Periodic Table of Chemical Elements. The system of orchestral tone colours has gaps between the rows that could be filled by a means of synthesis, like the gaps between Mendeleev’s Periodic Table of Chemical Elements have been filled with the latest developments in chemistry [...] It is obvious that the method of selection and crossing of sound and instruments, which is similar to the method of Michurin (Ivan Michurin Russian Biochemist and Horticulturist), will give us unprecedented, novel ‘fruit hybrids’ that are technically unobtainable for a usual orchestra [...]
(Yankovsky 1932-1940; 15,45)

“It is important now to conquer and increase the smoothness of tone colours, flowing rainbows of spectral colours in sound, instead of monotonous colouring of stationary sounding fixed geometric figures [wave shapes], although the nature of these phenomena is not yet clear. The premises leading to the expansion of these phenomena – life inside the sound spectrum – give us the nature of the musical instruments themselves, but “nature is the best mentor” (Leonardo da Vinci) […] The new technology is moving towards the trends of musical renovation, helping us to define new ways for the Art of Music. This new technology is able to help liberate us from the cacophony of the well-tempered scale and related noises. Its name is Electro-Acoustics and it is the basis for Electro-Music and Graphical Sound”.
Yankovsky 1934

To implement these theories yankovsky invented the Vibroexponator; No images or diagrams have survived but the Vibroexponator appears to be a process using a modified rostrum animation stand that allowed the photographed ‘spectral templates’ to be translated into audible sound and then combined into complex sound.

“The Vibroexponator is a complex, bulky tool for optical recording of synthetic sounds to the soundtrack of ordinary 35mm film by means of a specially produced intensive negatives. the instrument is partly mechanised and provides various motions to the original negative. The automation of the direction control is partially broken and requires extra repairs and maintenance, [...] The slide copying tool is intended for production of intensive negatives from films with transversal soundtracks. it too is a massive construction. The gearbox at least a 100-fold safety factor and a great power”

Nikolai Zimmin from the MINI institute describes the Vibroexponator in 1939

Yankovsky spent the next decade working on his spectral theories and building a ‘Syntone Database’ of his spectral templates by recording and analysing hundreds of samples of instruments from Bolshoi Theatre as well as samples of vowels and speech.

Slide copying machine tool diagram

Slide copying machine tool diagram

Political repression in the USSR stopped the funding of Yankovsky’s work until 1939 when he met the young inventor Evgeny Murzin who shared Yankovsky’s vision of a universal synthesis tool (which later emerged as the ANS Synthesiser) . Yankovsky together with Murzin and Yevgeny Sholpo formed the ‘Laboratory for Graphical Sound at the Institute of the Theatre and Film’ where he completed the final version of Vibroexponator. Further development of the instrument and of Yankovsky’s theories of spectral sound was halted by the outbreak of World War Two, Yankovsky never returned to graphical sound.

The Multzvuk group

Multzvuk group was formed in 1930 by Arseney Araazamov to conduct research into graphical sound techniques. The group was based at the Mosfilm Productions Company in Moscow (one of the leading film production companies in Moscow, renamed Gorki Film Studio in 1948) and consisted of composer and theoretician, Arseney Araamov, cameraman and draughtsmen  Nikolai Zhelynsky, animator Nikolai Voinov, painter and amateur acoustician Boris Yankovsky. In 1931 the group moved to ‘NIKFI’,  the ‘cientific Research Institute for Graphic Sound’. Leningrad, and and was renamed the ‘Syntonfilm laboratory’. In 1932 NIKFI stopped funding the group who then moved to Mezhrabpomfilm and finally closed in 1934.

From 1930-34 more than 2000 meters of sound track were produced by the Multzvuk group, including the experimental films ‘Ornamental Animation’, ‘Marusia Otravilas’, ‘Chinese Tune’, ‘Organ Chords’, ‘Untertonikum, Prelude’, ‘Piruet’, ‘Staccato Studies’, ‘Dancing Etude’ and ‘Flute Study’. The Multzvuk archive was kept for many years at Avraamov’s apartment, but destroyed in 1937.


 Sources

Electrified Voices: Medial, Socio-Historical and Cultural Aspects of Voice … edited by Dmitri Zakharine, Nils Meise

Graphical Sound Andrey Smirnov, Moscow, 2011

The ‘Ekvodin’ Andrei Volodin, Russia, 1937

The Ekvodin was a pioneering electronic synthesiser designed by the Russian engineer Andrei Volodin with Kovalski Konstantin and Yevgeny Murzin (later to invent the ANS synthesiser). The first versions of the Ekvodin were home-built experimental models that eventually became successful commercial keyboard instruments, used extensively in Russia throughout the 1940′s until the 1950′s. The Ekvodin won gold medals at the 1958 World Fair in Brussels and the Exhibition of Achievements of the National Economy in Moscow. By the 1970s, Andrei Volodin was teaching musical acoustics and sound synthesis at the Moscow State Conservatory, continuing research and development of the Ekvodin synthesizer and a new polyphonic instrument that was never finished.

Andrei Volodin playing an early model of the Ekvodin

Andrei Volodin playing an early model of the Ekvodin

The instrument was controlled via a six and a half octave, velocity sensitive keyboard which allowed the player to add vibrato by applying sideways movement to the key, plus a foot controlled volume pedal was included to add expression. Sound was generated from vacuum tubes and passed through a number of pre-set filter banks and octave dividers that could be combined to a total of 660 settings. the Ekvodin “was capable of imitating almost any symphony orchestra instrument, including percussion”

Ekvodin Diagram

Ekvodin Diagram

“We give musicians throughout the world a unique opportunity to breathe new life into their emotional art. Ekvodin – a musical instrument that’s perfect for orchestra and ensemble, and solos with piano accompaniment. The keyboard of this instrument is literally capable of singing glamorous melodies to fill every home. Any modern composer is pleasantly surprised when he discovered that Ekvodin is capable of producing a wide range of musical timbres with an extraordinary clarity and purity of sound. Performers, conductors and teachers will be fully satisfied with the outstanding expressive possibilities. Ekvodin opens truly cosmic prospects for every musician. Developed and manufactured in the USSR. ”

Ekvodin Advertising

Ekvodin B9 1950's Model

Ekvodin B9 1950′s Model


Sources

http://www.ruskeys.net

http://cuntroll.ru/articles/article15

the ‘Nivotone’ Alexei Voinov. Russia, 1931

The Nivotone optical reader

The Nivotone optical reader

The animator Nikolai Voinov (1900-1958), part of Arseney Avraamov‘s group ‘Multzvik’ in Moscow, 1931, started his own method of optical synthesis. Instead of drawing or printing to film Voinov cut wave forms from strips of paper which were then optically read by his machine the ‘Nivotone’ (‘Paper-Sound’) and translated into sound by a photo-electric process.

The Multzvuk group

Multzvuk group was formed in 1930 by Arseney Araazamov to conduct research into graphical sound techniques. The group was based at the Mosfilm Productions Company in Moscow (one of the leading film production companies in Moscow, renamed Gorki Film Studio in 1948) and consisted of composer and theoretician, Arseney Araamov, cameraman and draughtsmen  Nikolai Zhelynsky, animator Nikolai Voinov, painter and amateur acoustician Boris Yankovsky. In 1931 the group moved to ‘NIKFI’,  the Scientific Research Institute for Photography for Film. Moscow, and and was renamed the ‘Syntonfilm laboratory’. In 1932 NIKFI stopped funding the group who then moved to Mezhrabpomfilm and finally closed in 1934.

From 1930-34 more than 2000 meters of sound track were produced by the Multzvuk group, including the experimental films ‘Ornamental Animation’, ‘Marusia Otravilas’, ‘Chinese Tune’, ‘Organ Chords’, ‘Untertonikum, Prelude’, ‘Piruet’, ‘Staccato Studies’, ‘Dancing Etude’ and ‘Flute Study’. The Multzvuk archive was kept for many years at Avraamov’s apartment, but destroyed in 1937.


Sources

Electrified Voices: Medial, Socio-Historical and Cultural Aspects of Voice …edited by Dmitri Zakharine, Nils Meise

‘Graphical Soundtrack’ Arseney Avraamov, Russia, 1930

Arseny Avraamov in Moscow 1923. (Russian: Арсений Михайлович Авраамов), (born Krasnokutsky [Краснокутский], 1886 died Moscow, 1944)

Arseny Avraamov in Moscow 1923. (Russian: Арсений Михайлович Авраамов), (born Krasnokutsky [Краснокутский], 1886 died Moscow, 1944)

Arseny Mikhailovich Avraamov was an avant-garde Russian composer and theorist. He studied at the music school of the Moscow Philharmonic Society and when the first would war broke out he refused to join the army and fled the country working, among other things, as a circus artist. Avraamov returned during the revolution of 1917 where he pioneered optical synthesis techniques and developed his own  “Ultrachromatic” 48-tone micro tonal system ( “The Universal System of Tones,” 1927) but is probably best know for his “Simfoniya gudkov” or ‘symphony of sirens’ (November 7, 1922, Baku USSR) which involved navy ship sirens and whistles, bus and car horns, factory sirens, cannons, the foghorns of the entire Soviet flotilla of the Caspian Sea, artillery guns, machine guns, seaplanes, a specially designed “whistle main,” and renderings of Internationale and Marseillaise by a mass band and choir.

Avraamov's hand drawn audio waves

Avraamov’s hand drawn audio waves

Avraamov invented the first graphical soundtrack technique which involved hand-drawing geometrical representations of sound shapes and then repeatedly printing these shapes onto the audio-optical strip on a cine-film. This technique was later developed by Yevgeny Sholpo, Boris Yankovsky amongst others (including  Daphne Oram some thirty years later in England)

“By knowing the way to record the most complex sound textures by means of a phonograph, after analysis of the curve structure of the sound groove, directing the needle of the resonating membrane, one can create synthetically any, even most fantastic sound by  making a groove with a proper structure of shape and depth”.

From ‘Upcoming Science of Music and the New Era in the History of Music’ by Avraamov, 1916.

 

“Composer Arseny Avraamov at the scientific-research institute conducts the interesting experiments on a creation of the hand-drawn music. Instead of common sound recording on film by means of microphone and photocell, he simply draws on paper geometrical figures, then photographing them on sound track of the filmstrip. Afterwards this filmstrip is played as a common movie by means of film projector. Being read by photocell, amplified and monitored by loudspeaker, this filmstrip turns out to contain a well-known musical recording, while its timbre is impossible to relate to any existing musical instrument.
Comrade Avraamov conducts now a study in recording of more complicated geometrical figures. For instance, to record graphical representations of the simplest algebraic equations, to draw molecular orbits of some chemical elements. In this research composer is assisted by a group of young employee of the Research Institute for Film and Photo. By the end of December Avraamov will finish his new work and to show it to the film-community. Quite possibly the listening of the abstracts of “Hand Drawn Music” will be organized in radio broadcast”
(Kino 1931)

The Multzvuk group

Multzvuk group was formed in 1930 by Arseney Araazamov to conduct research into graphical sound techniques. The group was based at the Mosfilm Productions Company in Moscow (one of the leading film production companies in Moscow, renamed Gorki Film Studio in 1948) and consisted of composer and theoretician, Arseney Araamov, cameraman and draughtsmen  Nikolai Zhelynsky, animator Nikolai Voinov, painter and amateur acoustician Boris Yankovsky. In 1931 the group moved to ‘NIKFI’,  the Scientific Research Institute for Photography for Film. Moscow, and and was renamed the ‘Syntonfilm laboratory’. In 1932 NIKFI stopped funding the group who then moved to Mezhrabpomfilm and finally closed in 1934.

From 1930-34 more than 2000 meters of sound track were produced by the Multzvuk group, including the experimental films ‘Ornamental Animation’, ‘Marusia Otravilas’, ‘Chinese Tune’, ‘Organ Chords’, ‘Untertonikum, Prelude’, ‘Piruet’, ‘Staccato Studies’, ‘Dancing Etude’ and ‘Flute Study’. The Multzvuk archive was kept for many years at Avraamov’s apartment, but destroyed in 1937.


Sources

Avraamov, Ars. “Sinteticheskaya muzika” Sovetskaya Muzika , 1939, No.8, pp. 67-75

“Sound In Z: Experiments In Sound And Electronic Music In Early 20th Century Russia,”  Andrei Smirnov, Koening Books, ISBN 987-3-86560-706-5

‘Avant Garde composers of the USSR during the 1920′s’ Alexandra Martin

‘La Croix Sonore’ Nicolai Obukhov. Russia – France, 1929-1934

Modern reconstruction of the Croix Sonore at the musée de L'Opéra, Paris.

Modern reconstruction of the Croix Sonore at the musée de L’Opéra, Paris.

The “Sonorous Cross /La Croix Sonore” was one of several Theremin type instruments developed in Europe after Leon Termens departure to the USA in 1927, others included the “Elektronische Zaubergeige” and the “Elektronde”. The Sonorous Cross was designed and built in Paris by Michel Billaudot and Pierre Duvalier for the the Russian emigré composer Nikolay Obukhov in 1929. The instrument was the result of several years experimenting with beat frequency/heterodyning oscillators. As with the Theremin the Sonorous Cross was based on body capacitance controlling heterodyning vacuum tube oscillators. To suit Obukhov’s mystical and theatrical style, the circuitry and oscillators were built into a 44 cm diameter brass orb and the antennae disguised by a large 175 cm high crucifix adorned with a central star.

CMIM000031776
The Sonorous Cross was played in the same way as the Theremin – using the bodies capacitance to control the oscillators frequency, in this case moving the hands out from the central star on the crucifix altered the pitch and volume of the instrument. The ritualistic gestures made while playing this most unusual looking of instruments complemented the occult and mystical nature of Obukhov’s music and life.

Nikolay Obukhov composed numerous pieces using his instrument as well as several using the Ondes-Martenot, culminating in his major work;”Le Livre De Vie” which exploited the glissando effects the Sonorous Cross could produce. Obukhov continued to develop the instrument and produced an improved version, completed in 1934. Obukhov also designed two other instruments, the “Crystal” a piano type instruments where the hammers hit a row of crystal spheres and the “Éther” an electronically powered instruments where a large paddle wheel created various, apparently inaudible, humming sounds that was supposed to have a mystical effect on the listener.

Nicolas_Obouhow_35_h683

Nicolas or Nicolai Obukhov ( also Obouchov, Obuchov, Obouhow, Obuchow), Born April 22, 1892 in Ol’shanka, Kursk, Moscow – died, June 13, 1954 in St. Cloud, France

 

Nikolay Obukhov studied counterpoint at the Moscow Conservatory from 1911 and later at the St Petersburg Conservatory in 1913 (with Kalafati, Maksimilian Steinberg and Nikolay Tcherepnin). His first published works date from this period, and were published as ‘Quatre mélodies’ by Rouart et Lerolle in Paris in 1921.

Bienheureux6

In 1915 Obukhov developed his own idiosyncratic form of musical notation (similar to one invented in Russia by Golïshev during the same period) using a 12-tone chromatic language highly influenced by the mystical Russian composer Alexander Scriabin. The only performances of his music in Russia took place at this time. A report of the performance describes Obukhov as ‘a pale young man, with gazing eyes’ who ‘confused the audience’. Obukhov left Russia during the revolution with his wife and two children; they eventually settled near Paris a year later. In Paris he encountered financial hardship until helped by Maurice Ravel who found Obukhov a publisher allowing him to devote his time to his music.

tumblr_mfwpbz0em51r5yt7ko4_1280

The 1920s saw a handful of performances, most notably that of the ‘Predisloviye knigi zhizni’ (‘Introduction to the Book of Life’) under Kussevitzsky. During this and the next decade he put into practice ideas for electronic instruments Obukhov had conceived as early as 1917: the ‘efir’ and ‘kristal’ (‘ether’ and ‘crystal’) he had described in Russia eventually gave rise to the croix sonore, and even though he built and wrote for the ether, it was with the croix sonore that he gained most attention. He found an exponent of the instrument in his pupil Marie-Antoinette Aussenac-Broglie who had also performed some of his piano music; she demonstrated the instrument around France and Belgium. Similar to both the theremin and the ondes martenot in that pitch production is reliant upon the distance of the performer’s arm from the instrument, the croix sonore was the subject of a film of 1934. During the mid-1940s his notation again provoked heated discussion, this time in Paris; a book containing works from the 18th to the 20th centuries in Obukhov’s notation was published by Durand. In 1947, his ‘Traité d’harmonie tonale, atonale et totale’ ‚ which had already interested Honegger ‚ was published, while a year later he lectured on this subject in the Russian Conservatory in Paris. Obukhov spent his last years incapacitated by a mugging in 1949 where the final version of  ’the Book of Life’ was stolen; he composed only a few works after this incident.

tumblr_mfwpbz0em51r5yt7ko6_1280

Obukhov’s output is dominated by vast works of which the most notorious ‚ notwithstanding the gargantuan ‘Troisième et dernier testament’ and ‘La toute puissance’ ‚ is the ‘Kniga zhizni’ (‘The Book of Life’) on which he worked from around the time he left Russia until at least the mid-1920s. Described by the composer as ‘l’action sacrée du pasteur tout-puissant regnant’ it was intended to be performed (or ‘accomplished’) uninterruptedly every year on the night of the first and on the day of the second resurrection of Christ. Obukhov did not consider himself the composer of this work; instead, he saw himself as the person permitted, by divine forces, to ‘show’ it. Parts of the score, one version of which is nearly 2000 pages in length, are marked in the composer’s blood. The music is preceded by a lengthy exposition in archaic Russian, while the work concludes with one section the score of which unfolds into the form of a cross and another, taking the shape of a circle, which is fixed onto a golden and silver box decorated with rubies and red silk. (Nicholas Slonimsky, in his memoir ‘Perfect Pitch’ relates that the composer’s wife, driven to despair by Obukhov’s obsessive behaviour regarding this piece, attempted to burn ‚ or ‘immolate’, in the composer’s terminology ‚ the manuscript but was interrupted in her crime.) Much of the instrumental writing is characterized by the alternation of chorale-like material (often ornamented by filigree arppegiation) with tolling patterns, building to textures of considerable rhythmic and contrapuntal complexity. The vocal parts ‚ as with his writing for the voice in most of his other works ‚ have huge tessituras and are bespattered with glissandi and instructions for screaming or whispering. The style which is consistently applied in this magnum opus is prevalent in all of his mature works and has its roots in the songs and piano miniatures written in Russia.

0cc9cbc899ba0ebfbae36e9f7eb8934985b7364b

Taking as a starting point the language employed by Skriabin in his mid- and late-period works, Obukhov evolved a harmonic technique based on the systematic configuration and manipulation of 12-note chords or harmonic areas. The sonorities resulting from this ‘total harmony’ are often broadly octatonic and frequently have a quasi-dominant character due to the prevalence of diminished fifths in the lower elements. Although longer structures appear to unfold in a schematized yet organic manner, the detail of musical procedure is curiously static. Obukhov saw his work as a musical articulation of his strongly-held religious beliefs and would sometimes sign his manuscripts ‘Nicolas l’illuminé’ or ‘Nicolas l’extasié’. Possibly inspired by Vladimir Solov´yov’s idea of ‘sobornost´’ (collective spiritual or artistic experience), Obukhov sought to abolish the traditional performer-audience polarity in favour of a merging of these previously mutually exclusive groups into one of participants. Obukhov mostly used his own texts which are frequently inspired by the Book of the Revelation or the Apocrypha. It is thus no coincidence that the only poets whose work appealed to him spiritually and compositionally were Solov´yov and Bal´mont, since it was the former’s orthodox mysticism that significantly informed the apocalyptic vision of the latter. In addition to these sources, mention should be made of Obukhov’s use of two verses by Musorgsky; it is between his work and that of Messiaen that Obukhov’s visionary language can be placed.

(details from: Commentary, Composers:4. Russian,Lithuanian and Jewish composers)
obukhov

List of works by Nicolai Obukhov:

1945 Adorons Christ, for piano (Fragment du troisième et dernier Testament) Keyboard
1942 Aimons-nous les uns les autres, for piano Keyboard
1915 Conversion, for piano Keyboard
1916 Création de l’Or, for piano Keyboard
1915 Icône, for piano Keyboard
1916 Invocation, for piano Keyboard
1948 La paix pour les réconciliés – vers la source avec le calice, for piano Keyboard
1952 Le Temple est mesuré, l’Esprit est incarné, for piano Keyboard
1915 Pieces (2), for piano Keyboard
Pieces (2), for piano Keyboard Piece
1915 Prières, for piano Keyboard
1915 Revelation, for piano Keyboard

 


Sources

Hugh Davies. “Croix sonore.” In Grove Music Online. Oxford Music Online

E.Ludwig: “La Croix Sonore” ReM, nos 158-9(935),96 ReM,nos 290-91 (1972-73)

Consciousness, Literature and the Arts. Archive. Volume 1 Number 3, December 2000 “Skriabin and Obukhov: Mysterium & La livre de vie The concept of artistic synthesis”. By Simon Shaw-Miller
Commentary, Composers: Russian,Lithuanian and Jewish composers