The ‘Baldwin Organ’ Winston E. Kock & J.F. Jordan, USA, 1946

Early Model of Winston Kock's Baldwin organ

Winston Kock’s Baldwin Organ Model Five 1947

The Baldwin organ was an electronic organ, many models of which have been manufactured by the Baldwin Piano & Organ Co. since 1946. The original models were designed by Dr Winston E. Kock who became the company’s director of electronic research after his return from his studies at the Heinrich-Hertz-Institute, Berlin, in 1936. The organ was a development of Kock’s Berlin research with the GrosstonOrgel using the same neon-gas discharge tubes to create a stable, affordable polyphonic instrument. The Baldwin Organ were based on an early type of subtractive synthesis; the neon discharge tubes generating a rough sawtooth wave rich in harmonics which was then modified by formant filters to the desired tone.

Tone modifying circuits of the Baldwin organ

Tone modifying circuits of the Baldwin organ

Another innovative aspect of the Baldwin Organ was the touch sensitive keyboard designed to create a realistic variable note attack similar to a pipe organ. As the key was depressed, a curved metal strip progressively shorted out a carbon resistance element to provide a gradual rather than sudden attack (and decay) to the sound.  This feature was unique at that time, and it endowed the Baldwin instrument with an unusually elegant sound which captivated many musicians of the day.

“How did it sound? I have played Baldwin organs at a time when they were still marketed and in my opinion, for what it is worth, they were pretty good in relative terms.  That is to say, they sounded significantly better on the whole than the general run of analogue organs by other manufacturers, and they were only beaten by a few custom built instruments in which cost was not a factor.  It would not be true to say they sounded as good as a good digital organ today, but they compared favourably with the early Allen digitals in the 1970′s.  Nor, of course, did they sound indistinguishable from a pipe organ, but that is true for all pipeless organs.  To my ears they also sounded much better and more natural than the cloying tone of the more expensive Compton Electrone which, like the Hammond, also relied on attempts at additive synthesis with insufficient numbers of harmonics.”

From ‘Winston Kock and the Baldwin Organ; by Colin Pykett

Electronic Generator of the earlt model Baldwin Organ

Electronic Tone Generator of the early model Baldwin Organ showing neon gas-discharge tube oscillators.

Kock’s 1938 Patent of the Baldwin organ

Winston Kock playing an early experimental design for an electric instrument

Winston Kock playing his early experimental electronic instrument 1932

Winston E. Kock Biographical Details:

Winston Kock was born into a German-American family in 1909 in Cincinnati, Ohio. Despite being a gifted musician he decided to study electrical engineering at Cincinnati university and in his 20’s designed a highly innovative, fully electronic organ for his master’s degree.

The major problem of instrument design during the 1920′s and 30′s was the stability and cost of analogue oscillators. Most commercial organ ventures had failed for this reason; a good example being  Givelet & Coupleux’s  huge valve Organ in 1930. it was this reason that Laurens Hammond (and many others) decided on Tone-Wheel technology for his Hammond Organs despite the inferior audio fidelity.

Kock had decided early on to investigate the possibility of producing a commercially viable instrument that was able to produce the complexity of tone possible from vacuum tubes. With this in mind, Kock hit upon the idea of using much cheaper neon ‘gas discharge’ tubes as oscillators stabilised with resonant circuits. This allowed him to design an affordable, stable and versatile organ.

Kock's Sonar device during WW2

Kock’s Sonar device during WW2

In the 1930’s Kock, fluent in German, went to Berlin to study On an exchange fellowship (curiously, the exchange was with Sigismund von Braun, Wernher von Braun’s eldest brother –Kock was to collaborate with Wernher twenty five years later at NASA) at the Heinrich Hertz Institute conducting research for a doctorate under Professor K W Wagner. At the time Berlin, and specifically the Heinrich Hertz Institute, was the global centre of electronic music research. Fellow students and professors included; Jörg Mager, Oskar Vierling, Fritz Sennheiser, Bruno Helberger, Harald Bode, Friedrich Trautwein, Oskar Sala and Wolja Saraga amongst others. Kock’s study was based around two areas: – improving the understanding of glow discharge (neon) oscillators, and developing realistic organ tones using specially designed filter circuits. 

Kock worked closely with Oskar Vierling for his Phd and co-designed the GrosstonOrgel in 1934 but disillusioned by the appropriation of his work by the newly ascendant Nazi party he decided to leave for India, sponsored by the Baldwin Organ Company arriving at the Indian Institute of Music in Bangalore in 1935.

Returning from India in 1936, Dr Kock became Baldwin’s Director of Research while still in his mid-twenties, and with J F Jordan designed many aspects of their first electronic organ system which was patented in 1941.

NASA

Winston E Kock (L) as the first Director of Engineering Research at NASA

When the USA entered the second world war Kock moved to Bell Telephone Laboratories where he was involved on radar research and specifically microwave antennas. In the mid-1950’s he took a senior position in the Bendix Corporation which was active in underwater defence technology. He moved again to become NASA’s first Director of Engineering Research, returning to Bendix in 1966 where he remained until 1971 when he became Acting Director of the Hermann Schneider Laboratory of the University of Cincinatti. Kock Died in Cincinatti in 1982.

 Winston Kock was a prolific writer of scientific books but he also wrote fiction novels under the pen name of Wayne Kirk.

Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950's

Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950′s

Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950's

Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950′s

lenses

Acoustic lenses developed by Winston Kock at the Bell Labs in the 1950′s


Sources:

Hugh Davies. The New Grove Dictionary of Music and Musicians

http://www.pykett.org.uk/drkock.htm

The ‘Electrochord’ and the ‘Kraft Durche Freude Grosstonorgel’. Oskar Vierling & Winston E. Kock, Germany, 1933

Oskar Vierling  born: 24. January 1904 in Straubing, Germany -  Died 1986

Oskar Vierling born: 24. January 1904 in Straubing, Germany – Died 1986

Oskar Vierling was an important figure in the development of electronic musical instruments and electro-acoustic instruments during the 1930′s to the 1950′s. Vierling was a trained electronic engineer who, after studying at the Ohm Polytechnic, Nuremberg filed over 200 patents. In 1935 Vierling moved to Berlin where he received his doctorate in physics at the Technical University and then continued to work at the  Heinrich-Hertz-Institute of Vibration Research under Fritz Sennheiser.

The Electrochord

Electrochord at the Deutsches Museum in Munich

Electrochord at the Deutsches Museum in Munich

Vierling’s first musical instrument was the ‘Electochord’ an electro-acoustic piano designed and built in collaboration with  Benjamin Franklin Mießner and was commercially marketed by August Förster Piano Factory in Lõbau. The Elechtrochord worked by converting resonating piano strings via electro-magnets into electronic sounds in a similar way to Vierling’s Neo-Bechstien Piano (an early electro-acoustic piano designed by Vierling and Walther Nernst in 1931). The vibrations from a normal piano string were recorded and amplified electronically. Various register circuits enabled the player to change the sound’s timbre ranging from “a delicate Spinettte, the lyrical tone of a parlour organ to the powerful sound emission of a grand piano”. A restored model of the Electrochord is kept in the music collection of the Deutsches Museum in Munich. During the early 1930′s Vierling worked closely with Jorg Mager at his Darmstadt research centre on the construction of Klaviatursphäraphon amongst other instruments.

The Neo-Bechstien Electro-acoustic piano

The Neo-Bechstien Electro-acoustic piano

The ‘Kraft Durche Freude Grosstonorgel’

Keyboard fo the Grosstonorgel

Keyboard of the Kock-Vierlin KDF Grosstonorgel

Vierling went on to develop another large electronic organ; the ‘Grosstonorgel’ (together with  Karl Willy Wagner and the American engineer Winston E. Kock both at the Heinrich-Hertz-Institute. Winston Kock came to Berlin in 1933 as an exchange student at the Technical University of Berlin where he built an electronic organ for his diploma thesis. Since vacuum tubes were very expensive, he designed an instrument that relied instead on the smaller and cheaper neon tubes for the oscillators . He filed a patent for a use of inductive neon oscillators and sound-colour generation. It’s likely that the Grosstonorgel used similar neon or vacuum tube technology.

Joseph Goebbels at the GrosstonOrgel

Joseph Goebbels at the GrosstonOrgel

Work on the Grosstonorgel was funded by the National Socialist ‘Kraft Durche Freude’ cultural association (‘Strength Through Joy’  Set up as a tool to promote the advantages of National Socialism to the people,which became the world’s largest tourism operator of the 1930s) . The Grosstonorgel, as well as a Vierling designed 500 watt PA system, was a one-off instrument specifically designed to provide the musical accompaniment to the 1936 Olympic Games. A year later the instrument was also used at the Reich Party Congress of the National Socialist Party in Nuremberg. The new improved model was said to be able to produce “beautiful bell sounds” to accompany the Nazi propaganda spectacle.

The first broadcast of a concert consisting exclusively of electric instruments orchestra, organized by the "Radio Hour ', Berlin, 19 10 1932  The instruments were a Neo-Bechstein piano, Trautonium Heller ion, electric violin and cello, and two theremin instruments. Behind each instrument the corresponding speaker

The first electronic group? an purely electronic orchestra  organised by  “Radio Hour ‘ broadcast, Berlin, 19.10.1932. The instruments were a Neo-Bechstein piano, Trautonium, Hellertion, electric violin, electric cello, and two Theremins with a corresponding loudspeaker behind each instrument.

Vierling had joined the National Socialist Party (NDSAP)  in the late 1930s and in 1941 established the Vierling research group  with a staff of 200 employees co-operating directly with the Wermacht high command. The secret research establishment was located in Burg Feuerstein, Ebermannstadt disguised as a hospital with red-cross emblems on the roof to avoid allied bombing.

Burg Feuerstein home of the secret Vierling Research Group

Burg Feuerstein home of the secret Vierling Research Group

Research included audio-controlled torpedoes (codenamed “wren” and “vulture” where the torpedoes located their target from the propeller noises of enemy ships ), encryption technology (with Erich Hüttenhain and Erich Fellgiebel on a voice encryption method of the legendary SZ 42 cipher ), anti radar submarine coating (codenamed “chimney sweep”) as well as radio control equipment and electronic calculators. The Vierling company still exists as a family run business in Ebermannstadt.

The remains of the Vierling after Allied bombing in 145

The remains of the Vierling research laboratories in Burg Feuerstein after Allied bombing in 1945

After the fall of Nazi Germany the Burg Feuerstein castle was sealed-off by the American troops. Vierling revealed his previously secret work which he had hidden in secret walled off chambers in the castle and collaborated openly with the new occupiers “They were willing to talk about their work, and cooperated with the repair of the laboratory”. At this time Vierling met the British mathematician and the ‘Father of Computing’  Alan Turing (then working for the Ticom ; Target Intelligence Committee), to discuss details of encryption and specifically the Enigma machine. Vierling then worked at Gehlen Organisation (an American run espionage organisation employing hundred of ex-Nazis ) on the design of bugging devices for the American occupation (echoing the career trajectory of Lev Termen) and from 1949 to 1955, having escaped the De-Nazification process through his collaboration with the occupying powers, became professor of physics at the Philosophical-Theological College in Bamberg, Germany. Vierling continued working at Vierling AG in Ebermannstadt and died in 1986.

Vierling research laboratories in 1060

Vierling research laboratories in 1960

 

Kock and Vierling in Berlin

Excerpt from Hans-Joachim Braun’s ‘Music Engineers. The Remarkable Career of Winston E. Kock, Electronic Organ Designer and NASA Chief of Electronics’

“In the spring of 1933, after finishing his studies in Cincinnati, Kock became exchange fellow at the Technical University of Berlin. He had heard of Karl Willy Wagner’s work and wanted to conduct doctoral research with him at the Heinrich Hertz Institute. Kock’s counterpart as an exchange student from Berlin to Cincinnati was Sigismund von Braun, Wernher von Braun’s eldest brother. In Berlin Kock wrote a Ph. D. thesis on oscillations in inductive glow discharge circuits and, with Oskar Vierling, another student of Wagner’s, designed an improved electronic organ on the formant principle. Oskar Vierling, Kock’s collaborator on the Kock-Vierling organ, had studied electrical engineering at an engineering school and in 1925 joined the Laboratory of the German Research Institute for Telegraphy headed by Karl Willy Wagner. In 1928 he followed Wagner as his assistant to the newly founded ‘Institute for Vibration Research’ conducting acoustic research and designing electrified pianos and electronic organs. Together with the Nobel Laureate Walter Nernst he in 1931 designed the Neo-Bechstein piano, an electrostatic piano and from 1928 to 1935 developed his Electrochord for the piano manufacturer Förster. The National Socialist Strength through Joy organization sponsored Vierling’s ‘Strength through Joy Organ’ which was played at the Olympic Games in Berlin in 1936. This enlarged and improved version of the Kock-Vierling model created a sensation as did his electrically generated bell sounds which he presented at the National Socialist Party Rally in Nuremberg a year later.8 Fascination by technology, electricity and electronics,surprising effects, glorious sounds, this was food for the masses and much appreciated by the party propagandists. Vierling’s mentor Karl Willy Wagner must have watched his former assistant’s success with very mixed feelings, having himself been forced to resign from his directorate of the Heinrich Hertz Institute in 1936. There is an irony in the fact that Kock,who played a significant role in the US War effort during World War II, contributed, although unintentionally, to enhancing Nazi propaganda efforts.”


Sources

Peter Donhauser ‘THE FIRST ELECTRO-ACOUSTICAL PIANO IN GERMANY. THE NEO-BECHSTEIN AND IT’S RESTORATION’ Vienna Museum of Technology
Mariahilfer Strasse 212, 1140 Vienna

Hans-Joachim Braun ‘Music Engineers. The Remarkable Career of Winston E. Kock, Electronic Organ Designer and NASA Chief of Electronics’

‘Tarnname Schornsteinfeger’ by Thadeusz, Frank ‘Was wurde im Geheimlabor der Nazis auf Burg Feuerstein erforscht? Der Erfinder Oskar Vierling soll dort akustische Leitsysteme für die Wehrmacht entwickelt haben.’ Der Spiegel 18.04.2011

Wolfgang Voigt: Oskar Vierling, ein Wegbereiter der Elektroakustik für den Musikinstrumentenbau, in: Das Musikinstrument vol. 37, Nr 1/2, 1988, 214-221 und Nr. 2/3, 172-176.

http://www.vierling.de/

http://www.august-foerster.de

The ‘Melodium’. Harald Bode, Germany, 1938

The "Melodium" (1938)

The “Melodium” (1938)

Bode’s second instrument, previewed in 1938 was a monophonic touch sensitive keyboard instrument, the ‘Melodium’, developed with the assistance of Oskar Vierling, inventor of the ‘Grosstonorgel’. The instrument was used extensively for film music and ‘light music’ during the 1940′s.
Bode had designed oscillators with good pitch stability given the technology of the time, but he realized that a monophonic instrument would present far fewer tuning problems than his radical Warbo Organ. Like all good designers, Bode understood the necessity for providing increased nuance capability in a solo instrument; hence, touch sensitivity. The Melodium had a 49-note keyboard (low-note priority). But unlike traditional keyboards, each key had a fulcrum, or pivot point, not at the rear of the key, but at its midpoint. Each key was an individual little teeter-totter; when the performer depressed any key, he or she could seesaw a long aluminium rail located at the rear of all keys up and down. This rail made contact with a strip of felt soaked in glycerine — a so-called “liquid potentiometer.” Depression of the felt altered the electrical resistance between two electrodes, providing loudness control. This was a direct keying system that should not be confused with modern force-sensitive keyboards found on certain synthesizers. On the Melodium, the actual onset of sound was begun like it is on most acoustic instruments: as a function of the performer’s continuously variable mechanical effort. This is unlike most of today’s synthesizers; they have electronic envelope generators with fixed time constants for attack and release. Even when a synthesizer is force-sensitive, this sensitivity is usually in conjunction with the unvarying envelope generator attack and release. (Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68) )

The articulation on the Melodium has been likened to that of Franklin’s Glass Harmonica, an instrument having rotating glass disks that are played with moistened fingers. This characteristic singing (slow) attack, and the tone colours produced by formant filters borrowed from the earlier four-note organ, made the Melodium an expressive and colourful instrument that found public acceptance. Bode says:

… it was a very responsive instrument to the response of the artist, although it didn’t have these automatic — or maybe because it didn’t have these automatic [envelope] — controls.” Harald Bode

Due to its unorthodox design, the Melodium was not suitable for mass production; it found public acceptance through its rental for film scores, stage plays and on German radio. It enjoyed a considerable vogue with German film score composers. The brief career of the Melodium ended in 1941 due to the war; eventually Bode had to cannibalize the instrument due to the scarcity of electronic components.

The "Melodium" (1938)

The “Melodium” (1938)

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.

 


Sources

Bode’s Melodium and Melochord by Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68)