The ‘Multimonica’, Harald Bode, Germany, 1940

Bode's 'Multimonica'

Harald Bode’s ‘Multimonica II’. The front panel controls of the Multimonica II, from left to right are: power switch and volume knob; six switches for different presets; tuning knob; two switches for different harmonic filtering; three switches for vibrato speed and amplitude; and power switch for the blower fan.

The ‘Hohner Multimonica’ was the first mass-produced analogue synthesiser. It was sold throughout Europe from 1940 by the German company Hohner GmbH (known at the time for their acoustic harmoniums and mouth-organs)  and designed by the pioneering engineer Harald Bode – an important figure in electronic instrument design who was hugely influential on future electronic instrument and synthesiser design.
The Multimonica was a  commercial hybrid electronic/acoustic instrument with two keyboards; the lower one a 41 note wind-blown reed harmonium instrument,  and the upper, an electronic monophonic sawtooth synthesiser. Housed in a modernist streamlined black and white Bakelite casing, the instrument features a loudspeaker, tube-generated electromechanical vibrato (based onEL41, ECC40, and EF40 tubes.), 6 pre-set synth sounds, 2 switches for harmonic filtering, and 3 switches for the vibrato speed and amplitude, as well as a knee lever for volume control. The Multimonica II released in 1953 featured one loudspeaker and provided more types of harmonics filtering than the pre-war Multimonica I, and the electro-mechanical vibrato was changed to a more sophisticated neon-gas-tube-based design.

Images of the Multimonica II

 

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.

Harald Bode’s sketchbooks

 


Sources:

“Living For Sound- The Inventor Harald Bode And The Evolution Of Electronic Music”  http://www.dradio.de/

The Electrophon (1921), Sphäraphon(1924), kurbelsphärophon (1926), Klaviatursphäraphon(1928), Partiturophon (1930) and Kaleidophon(1939). Jörg Mager, Germany.

Jörg (Georg Adam) Eichstätt Mager  born  November 6, 1880 Aschaffenburg, Bavaria, Died Aschaffenburg 1939

Jörg (Georg Adam) Eichstätt Mager born November 6, 1880 Aschaffenburg, Bavaria, Died Aschaffenburg 1939

 “Whoever has occupied himself even a little with electric sounds will be forced to the conclusion: there are yet things in music of which our book-learning cannot dream.” Jörg Mager

Jörg Mager’s lifelong fascination with micro-tonal music began accidentally during the hot summer of 1911 when he heard an out of tune organ playing notes beyond the fixed tempered scale. Fascinated by the instruments strange sounds he began to explore the concepts of half and quarter tone music which he eventually self-published in his ‘ Vierteltonmusik’ of 1915. At the same time he began to design an instrument that was capable of delivering micro-tonal and quarter tone scales, the first of which was an acoustic harmonium, the ‘Vierteltonharmonium’ (Four-Tone harmonium)  in 1912.

After his participation in the failed 1918 communist coup in Bavaria, Mager left for Berlin. Here he joined a small circle of microtonal musicians (Mager, Alois Hába, Richard Stein, Ivan Wischnegradsky ) under the wing of renowned composer and theorist Ferruci Bussoni. This circle of musicians were united in their aim to liberate music from the tyranny of fixed-tonality, however, rather than adapt existing instruments, Mager decided to create an entirely new instrument based on the emerging radio technology of the time.

To survive in post WW1 hyper-inflationary Berlin, Mager accepted any unskilled labour he could find. It was while working in a radio vacuum tube factory that he hit upon the idea of using vacuum tubes as the basis for his first electronic microtonal instrument, the Electrophon in 1921. The Electrophon was a simple monophonic instrument based on the same heterodyne principal as that of the Theremin; a method by which two frequencies are combined within the radio frequency spectrum (not perceptible by the human ear) to produce a third frequency that is equal to the difference between the latter two frequencies and that itself is within the audible spectrum humans. In case of Electrophon two  50 Khz frequency oscillators were used. The novel feature of the Electrophon was that rather than being controlled by a fixed tone manual, notes were instead triggered by rotating a metal handle, creating a glissando type effect on a continuous tone. Under the handle was a semicircular plate marked with chromatic scale intervals. Changes in  timbre could be applied through various filters. Further developments of the Electrophon were christened the Sphärophon after the Pythagorean legend of the music of the spheres.

“The music of the future will be attained by radio instruments! Of course, not with radio transmission, but rather direct generation of musical tones by means of cathode instruments! […] Indeed, the cathode-music will be far superior to previous music, in that it can generate a much finer, more highly developed, richly coloured music than all our known musical instruments! ”
Jörg Mager: ” Eine Neue Epoch Der Music Durch radio” (Berlin 1924)

Mager’s proposal in ” Eine Neue Epoch…” was that the medium of radio should be used to create and deliver a new type of utopian ‘free’ music by means of new electronic cathode-ray musical instruments, rather than just a means of transmitting mass content:

“…Radio firms have mobilised more energy for transmission of a radio-music but have hardly shown any interest in the most important problem: the production of music itself.”

“…the music of the future will be implemented largely by radio instruments not only in the sense that they can be easily transmitted, but especially that musical sounds can be produced directly through cathode-ray instruments . “

Mager’s fellow Microtonalist Czech composer Alois Hába added:

 “This is a new era in the development, not only in building instruments, but in music in general . “

Further developments of the Sphärophon lead to the kurbelsphärophon unveiled at the 1926 Donaueschingen summer music festival (alongside Leon Termen’s Theremin). This adaptation added a second manual dial that allowed the player to interrupt the instrument’s continuous output and avoid the continuous glissando of the Sphärophon  by queuing up another note and added two pedals to control each note’s volume and envelope.

Mager playing the kurbelsphärophon

Mager playing the Kurbelsphärophon

Though mostly ignored at the time,  Mager’s instrument quickly gained notoriety throughout Germany; the composer Georgy Rimsky-Korsakov (Grandson of the Russian composer) composed some quarter-tone experimental pieces and Paul Hindemith enthusiastically  endorsed Mager’s instrument. This support lead to the the formation in 1929 of the ‘Studiengesellschaft für Elektro Akustische Musik’  (‘Society for Electro-acoustic Music) in Darmstadt to support his research (funded by the city of Darmstadt, the Heinrich Hertz Institut für Schwingungsforschung and the Reichsrundfunk radio station) . The society was housed in a large, luxurious castle in Darmstadt and staffed with skilled technicians including the future electronic instrument designer Oskar Vierling.

The Klaviatursphäraphon

The Klaviatursphäraphon

With this resource at his disposal Mager continued to develop his instrument design, creating the Klaviatursphäraphon in 1928. In this model he replaced the handles of the Kurbelsphäraphon with two short keyed monophonic keyboards – the shorter keys allowing the player to play both keyboards simultaneously thereby producing a duophonic tone. It was also possible by adjusting the capacitance of the sound generating circuit to alter the intervals between each key and scale the acoustic length of the keyboard. An octave could be made as small as a major second, so that each successive step represented an interval of a 12th tone. Additional tone colour was added by mechanical resonators, series of filters and specially formed resonant speakers.

Jorg Mager and the The Partiturophon

Jorg Mager and the The Partiturophon

By now, Mager’s focus was moving from micro-tonality towards audio timbre. The “Partiturophon” (from the German ‘Partitur’ or musical score, reflecting his aim of capturing the varied combinations of orchestral timbre) was a four (in later models, five) keyboard and five voice version of the Klaviatursphäraphon produced in 1930. This instrument allowed the player to play four (or five) voices at once, one voice per keyboard:

“Mager produced today and organ with many registers on which four voice playing is possible. So far there is only one difficulty; that is, that each voice must have its own keyboard, thus the four voice movement must be played on three manuals and the pedal. For this reason the manuals must be close to each other and the keys short, so that one can easily play on several manuals with one hand. For this reason the keys are somewhat narrower than those on a regular organ or piano keyboard. Apart from these difficulties, which require a special adjustment to the playing of the new instrument, it is surprising in its infinite multiplicity of sound possibilities, through dynamic wealth of shading and through the possibilities of expression in the tones”

The critic and historian Frederick Prieberg on the Partiturophon

1932 marked the high point of Mager’s success. He had become a household name in Germany and  received commissions, from Winifred Wagner herself, to provide the sound effects for the annual Beyreuth Wagner festival, and he was also commissioned to mark the centenary of Gothe’s death with a micro-tonal piece  for thirty theatrical interpretations of drama Faust , which took place in Frankfurt and Darmstadt. Other plaudits came from  composers and conductors Arturo Toscanini and Wilhelm Furtwängler , the latter the director of the orchestral interpretation of Parsifal in 1931.

The Kaleidophon

The Kaleidophon

Yet this success was short lived. A new electronic instrument had emerged in 1930; Dr Friedrich Trautwien’s ‘Trautonioum’. In contrast to Mager’s amateur enthusiasm, Trautwien was a trained engineer and managed to produce an instrument that was both novel, reliable and wasn’t shackled by the complexity of Mager’s devotion to micro-tonality. The final blow to Mager came in 1933 when Hitler’s National Socialists took power. Experimental music was labelled  ‘Entartete’ or ‘degenerate’ and un-German; the great flowering of German musical innovation had come to an abrupt end. Mager tried to ingratiate himself into the new party “to get on the gravy train” but became increasingly paranoid and irritable, driving away many of his collaborators and supporters. In the struggle to develop the Partiturophon as a commercial domestic instrument, the contract for the  ‘Studiengesellschaft für Elektro Akustische Musik’ lapsed and funding dried up. Mager spent the rest of his life leading an impoverished semi-nomadic existence. His state of health was increasingly precarious due to diabetes and growing disorientation and mental confusion. His daughter Sofie, brought him back to Aschaffenburg, where he died on April 5, 1939, at the age of 59.

spite the oppressive new political climate, Mager was commissioned to create sound effects with the Partiturophon in the 1936 film "Stärker Paragraphen als"  by Jürgen von Alten , with music by Rudolf Perak.

spite the oppressive new political climate, Mager was commissioned to create sound effects with the Partiturophon in the 1936 film “Stärker Paragraphen als” by Jürgen von Alten , with music by Rudolf Perak.

None of Mager’s instruments are known to have survived the Second World War, The castle at Darmstadt was heavily bombed by the Allies, obliterating the last traces of the Partiturophon and it’s predecessors. The last of Mager’s family of instruments was the Kaleidophon completed in 1939 and only survives in notes as “…a monophonic electronic instrument with kaleidoscopic sound mixtures following the tonal precepts of Arnold Schoenberg and Ferruccio Busoni.”

Mager's colleague Alois Hába playing the Partituropohn

Mager’s colleague Alois Hába playing the Partituropohn

Mager’s instruments ultimately failed because of, on one hand, Mager’s single minded devotion to microtonality which had virtually no repertoire and was little accepted even by the avant garde of the time ( even Mager’s close circle of friends Hába, Wischnegradsky and Stein never realised their promises to compose  for the instruments) and on the other, the fact that the instruments were in continual development, unstable and never completely finished making it difficult to become anything more than an interesting curiosity.


Sources

Jörg Mager: ” Eine Neue Epoch Der Music Durch radio” (Berlin 1924)

http://acousmata.com/post/27443169341/jorg-mager

http://www.audionautas.com/2010/10/jorg-mager-el-genio-hurano-i.html

Peter Donhauser, “Electric sound machines. Pioneer days in Germany and Austria,” Böhlau Verlag, ISBN 9783205775935

Fred Prieberg, “Music in the Nazi state,” Dittrich Verlag, ISBN 392086266XElena monster, “As the electronic music was ‘invented’ ,” Schott Verlag, ISBN 3795718910

MAGER Jörg: Eine neue Epoche der Musik durch Radio, Berlin-Neukölln 1924. : Vierteltonmusik, Aschaffenburg [1915].

The ‘Electrochord’ and the ‘Kraft Durche Freude Grosstonorgel’. Oskar Vierling & Winston E. Kock, Germany, 1933

Oskar Vierling  born: 24. January 1904 in Straubing, Germany -  Died 1986

Oskar Vierling born: 24. January 1904 in Straubing, Germany – Died 1986

Oskar Vierling was an important figure in the development of electronic musical instruments and electro-acoustic instruments during the 1930′s to the 1950′s. Vierling was a trained electronic engineer who, after studying at the Ohm Polytechnic, Nuremberg filed over 200 patents. In 1935 Vierling moved to Berlin where he received his doctorate in physics at the Technical University and then continued to work at the  Heinrich-Hertz-Institute of Vibration Research under Fritz Sennheiser.

The Electrochord

Electrochord at the Deutsches Museum in Munich

Electrochord at the Deutsches Museum in Munich

Vierling’s first musical instrument was the ‘Electochord’ an electro-acoustic piano designed and built in collaboration with  Benjamin Franklin Mießner and was commercially marketed by August Förster Piano Factory in Lõbau. The Elechtrochord worked by converting resonating piano strings via electro-magnets into electronic sounds in a similar way to Vierling’s Neo-Bechstien Piano (an early electro-acoustic piano designed by Vierling and Walther Nernst in 1931). The vibrations from a normal piano string were recorded and amplified electronically. Various register circuits enabled the player to change the sound’s timbre ranging from “a delicate Spinettte, the lyrical tone of a parlour organ to the powerful sound emission of a grand piano”. A restored model of the Electrochord is kept in the music collection of the Deutsches Museum in Munich. During the early 1930′s Vierling worked closely with Jorg Mager at his Darmstadt research centre on the construction of Klaviatursphäraphon amongst other instruments.

The Neo-Bechstien Electro-acoustic piano

The Neo-Bechstien Electro-acoustic piano

The ‘Kraft Durche Freude Grosstonorgel’

Keyboard fo the Grosstonorgel

Keyboard of the Kock-Vierlin KDF Grosstonorgel

Vierling went on to develop another large electronic organ; the ‘Grosstonorgel’ (together with  Karl Willy Wagner and the American engineer Winston E. Kock both at the Heinrich-Hertz-Institute. Winston Kock came to Berlin in 1933 as an exchange student at the Technical University of Berlin where he built an electronic organ for his diploma thesis. Since vacuum tubes were very expensive, he designed an instrument that relied instead on the smaller and cheaper neon tubes for the oscillators . He filed a patent for a use of inductive neon oscillators and sound-colour generation. It’s likely that the Grosstonorgel used similar neon or vacuum tube technology.

Joseph Goebbels at the GrosstonOrgel

Joseph Goebbels at the GrosstonOrgel

Work on the Grosstonorgel was funded by the National Socialist ‘Kraft Durche Freude’ cultural association (‘Strength Through Joy’  Set up as a tool to promote the advantages of National Socialism to the people,which became the world’s largest tourism operator of the 1930s) . The Grosstonorgel, as well as a Vierling designed 500 watt PA system, was a one-off instrument specifically designed to provide the musical accompaniment to the 1936 Olympic Games. A year later the instrument was also used at the Reich Party Congress of the National Socialist Party in Nuremberg. The new improved model was said to be able to produce “beautiful bell sounds” to accompany the Nazi propaganda spectacle.

The first broadcast of a concert consisting exclusively of electric instruments orchestra, organized by the "Radio Hour ', Berlin, 19 10 1932  The instruments were a Neo-Bechstein piano, Trautonium Heller ion, electric violin and cello, and two theremin instruments. Behind each instrument the corresponding speaker

The first electronic group? an purely electronic orchestra  organised by  “Radio Hour ‘ broadcast, Berlin, 19.10.1932. The instruments were a Neo-Bechstein piano, Trautonium, Hellertion, electric violin, electric cello, and two Theremins with a corresponding loudspeaker behind each instrument.

Vierling had joined the National Socialist Party (NDSAP)  in the late 1930s and in 1941 established the Vierling research group  with a staff of 200 employees co-operating directly with the Wermacht high command. The secret research establishment was located in Burg Feuerstein, Ebermannstadt disguised as a hospital with red-cross emblems on the roof to avoid allied bombing.

Burg Feuerstein home of the secret Vierling Research Group

Burg Feuerstein home of the secret Vierling Research Group

Research included audio-controlled torpedoes (codenamed “wren” and “vulture” where the torpedoes located their target from the propeller noises of enemy ships ), encryption technology (with Erich Hüttenhain and Erich Fellgiebel on a voice encryption method of the legendary SZ 42 cipher ), anti radar submarine coating (codenamed “chimney sweep”) as well as radio control equipment and electronic calculators. The Vierling company still exists as a family run business in Ebermannstadt.

The remains of the Vierling after Allied bombing in 145

The remains of the Vierling research laboratories in Burg Feuerstein after Allied bombing in 1945

After the fall of Nazi Germany the Burg Feuerstein castle was sealed-off by the American troops. Vierling revealed his previously secret work which he had hidden in secret walled off chambers in the castle and collaborated openly with the new occupiers “They were willing to talk about their work, and cooperated with the repair of the laboratory”. At this time Vierling met the British mathematician and the ‘Father of Computing’  Alan Turing (then working for the Ticom ; Target Intelligence Committee), to discuss details of encryption and specifically the Enigma machine. Vierling then worked at Gehlen Organisation (an American run espionage organisation employing hundred of ex-Nazis ) on the design of bugging devices for the American occupation (echoing the career trajectory of Lev Termen) and from 1949 to 1955, having escaped the De-Nazification process through his collaboration with the occupying powers, became professor of physics at the Philosophical-Theological College in Bamberg, Germany. Vierling continued working at Vierling AG in Ebermannstadt and died in 1986.

Vierling research laboratories in 1060

Vierling research laboratories in 1960

 

Kock and Vierling in Berlin

Excerpt from Hans-Joachim Braun’s ‘Music Engineers. The Remarkable Career of Winston E. Kock, Electronic Organ Designer and NASA Chief of Electronics’

“In the spring of 1933, after finishing his studies in Cincinnati, Kock became exchange fellow at the Technical University of Berlin. He had heard of Karl Willy Wagner’s work and wanted to conduct doctoral research with him at the Heinrich Hertz Institute. Kock’s counterpart as an exchange student from Berlin to Cincinnati was Sigismund von Braun, Wernher von Braun’s eldest brother. In Berlin Kock wrote a Ph. D. thesis on oscillations in inductive glow discharge circuits and, with Oskar Vierling, another student of Wagner’s, designed an improved electronic organ on the formant principle. Oskar Vierling, Kock’s collaborator on the Kock-Vierling organ, had studied electrical engineering at an engineering school and in 1925 joined the Laboratory of the German Research Institute for Telegraphy headed by Karl Willy Wagner. In 1928 he followed Wagner as his assistant to the newly founded ‘Institute for Vibration Research’ conducting acoustic research and designing electrified pianos and electronic organs. Together with the Nobel Laureate Walter Nernst he in 1931 designed the Neo-Bechstein piano, an electrostatic piano and from 1928 to 1935 developed his Electrochord for the piano manufacturer Förster. The National Socialist Strength through Joy organization sponsored Vierling’s ‘Strength through Joy Organ’ which was played at the Olympic Games in Berlin in 1936. This enlarged and improved version of the Kock-Vierling model created a sensation as did his electrically generated bell sounds which he presented at the National Socialist Party Rally in Nuremberg a year later.8 Fascination by technology, electricity and electronics,surprising effects, glorious sounds, this was food for the masses and much appreciated by the party propagandists. Vierling’s mentor Karl Willy Wagner must have watched his former assistant’s success with very mixed feelings, having himself been forced to resign from his directorate of the Heinrich Hertz Institute in 1936. There is an irony in the fact that Kock,who played a significant role in the US War effort during World War II, contributed, although unintentionally, to enhancing Nazi propaganda efforts.”


Sources

Peter Donhauser ‘THE FIRST ELECTRO-ACOUSTICAL PIANO IN GERMANY. THE NEO-BECHSTEIN AND IT’S RESTORATION’ Vienna Museum of Technology
Mariahilfer Strasse 212, 1140 Vienna

Hans-Joachim Braun ‘Music Engineers. The Remarkable Career of Winston E. Kock, Electronic Organ Designer and NASA Chief of Electronics’

‘Tarnname Schornsteinfeger’ by Thadeusz, Frank ‘Was wurde im Geheimlabor der Nazis auf Burg Feuerstein erforscht? Der Erfinder Oskar Vierling soll dort akustische Leitsysteme für die Wehrmacht entwickelt haben.’ Der Spiegel 18.04.2011

Wolfgang Voigt: Oskar Vierling, ein Wegbereiter der Elektroakustik für den Musikinstrumentenbau, in: Das Musikinstrument vol. 37, Nr 1/2, 1988, 214-221 und Nr. 2/3, 172-176.

http://www.vierling.de/

http://www.august-foerster.de

The ‘Hellertion’ and The ‘Heliophon’. Bruno Hellberger & Peter Lertes, Germany, 1929-1936

Diagram showing the sliding control of the Hellertion.

Diagram showing the sliding control of the Hellertion.

The Hellertion (1929)

The Hellertion,christened after the combination of the inventors names, was a monophonic vacuum tube instrument developed collaboratively by Peter Lertes, an electrical engineer in Leipzig and Bruno Helberger, a well known pianist of his time. Several variants of the instrument were constructed with the assistance of Schneider-Opel in Frankfurt, Germany the last of which was known as the Heliophon. The Hellertion was one of the first electronic instruments to use a fingerboard/continuous controller instead of a keyboard manual. The fingerboard was a flat metal resistance strip covered in leather which when pressed completed a circuit. Depending on where the strip is pressed, a different resistance in the circuit is created altering the voltage sent to the oscillator and thereby producing different pitches. The force of the pressure controlled the volume of the output signal. The fingerboard was marked to help the performer find the correct pitch on the strip and had a range of approximately five octaves. The original instrument had just one fingerboard strip which was gradually increased to four and then on the later models, six aligned in parallel horizontally at the height of a piano keyboard. The four and six strip models allowed four and six voice polyphony when the strip could be played simultaneously with fingers and thumbs. The Hellertion was occasionally used in concerts as a piano addition, the melody being played with one hand on the Hellertion and the accompaniment being played with the other hand on the piano. A version of the Hellertion was produced in 1931 microtonally tuned to 10 divisions of an octave.
The four-slider controls of the Hellertion

The four-slider controls of the Hellertion

The Helliophon (1936)

A development of the Hellertion by Bruno Hellberger. The first version of the Heliophon was completed in Berlin,1936 but destroyed during WW2. Hellberger continued the development after the war and built a second model in 1947 in Vienna, Austria and continued the development of the Heliophon until his death in Vienna in 1951 (subsequent development was taken over by Woflgang Wehrmann). The sound of Heliophon was produced, as with the Hellertion, by heterodyning vacuum tube oscillators but with the Heliophon the sound was controlled by two 58 note pressure sensitive keyboard manuals instead of a series of fingerboard strips. Each keyboard had the ability to be split into three different pitches and timbres simultaneously, the output volume being controlled by foot pedals with a knee lever to add vibrato. Each keyboard had a Hellertion style fingerboard to add glissando and timbre variations.The Heliophon was used by Hellberger throughout the 1940′s and 50′s for theatrical and musical productions, the instrument was said not only to be capable of producing realistic imitations of orchestral instruments but able to imitate  human vocal sounds.

Sources:

A survey of ‘modern’ electronic instruments was published by Peter Lertes in 1933: “Elektrische Musik:ein gemeinverständliche Darstellung ihrer Grundlagen, des heutigen Standes der Technik und ihre Zukunftsmöglickkeiten” (Dresden & Leipzig, 1933)J.Marx:”Heliophon, ein neues Musikinstrument”, Ömz,ii(1947),314

 “Das Hellertion, ein neues electrisches Musikinstrument,” Funkbastler, July 3, (1931).

The ‘Welte Licht-Ton-Orgel’. Edwin Welte, Germany, 1936

The "Welte Licht-Ton Orgel" (Light-Tone organ) (1936)

The “Welte Licht-Ton Orgel” (Light-Tone organ) (1936)

The Welte Light-Tone was one of the last instruments designed by Edwin Welte (1876-1958) of the famous Welte-Mignon mechanical instrument manufacturers. Welte had become fascinated with the possibility of using optical disks since 1925 and produced a number of prototypes using clay optical disks before completing the production version of the Lichttonorgel. The organ premiered in 1936 at the Berlin philharmonic but any potential the instrument had was destroyed by the Nazi’s disapproval of Welte due to his marriage to a German Jew. After the war Welte continued to try and make a commercial success of the instrument but eventually foundered due to the complexity of the photo-electric system and  from increasing competition from cheaper and more efficient instruments such as the Hammond Organ. Welte never built a production model of the Lichtonorgel.
A detail of one of the the Light Tone Organ's glass disks.

A detail of one of the the Light Tone Organ’s glass disks.

The instruments sound generation unit consisted of 12 glass disks which were printed with 18 different looped waveforms in concentric rings. The glass ‘tone wheel’ disks were rotated over a series of photoelectric cells, filtering a light beam that controlled the sound timbre and pitch. The resulting combinations of tones gave 3 different timbres for all the octave registers of each note on the keyboard.
The German arm of the Welte-Mignon company in Frieburg was completely destroyed in 1944 by allied bombing and all of the companies closely kept secret designs were lost forever.
Lichtorgel
Edwin Welte.  March 28 1876 in Freiburg im Breisgau , † January 4 1958 in Freiburg im Breisgau

Edwin Welte. March 28 1876 in Freiburg im Breisgau , † January 4 1958 in Freiburg im Breisgau

Biographical Information

Edwin Welte (1876-1958) and his brother-in-law, Karl Bockish, developed the Welte-Mignon reproducing piano in 1904 for M. Welte & Soehne of Freiburg, Germany. Music roll recording commenced in 1905.  The recording piano and the reproducing system were entirely new inventions which astounded the musicians and fans in Europe.  In 1906 (?) he established “The Welte Artistic Player Piano Company” in a showroom in New York and soon was producing pianos and music rolls for American customers.
welte-mignon_img08_ori

The Welte Company

The Welte Company was a German organ firm which was first established in 1832 at Vörenbach (Black-Forest) by automata manufacturer Michael Welte (1807-1880). In c1865 he moved to Freiburg/Breisgau and the firm was registered there as M. Welte & Söhne. During the remainder of the 19th century the Welte firm expanded considerably and became particularly noted for their orchestrions. Welte’s “Cabinet player”, a reproducing piano without keyboard which bore the Mignon label, was first patented in 1904 while the firm was under the direction of Edwin Welte (1876-1958, grandson of the founder). The prototype was exhibited during late 1904 in Leipzig and became commercially available from early 1905. The Vorsetzer came on the market in 1908. Mignon was integrated into their upright pianos in 1909, and into their grand pianos from 1913. In 1908 the technology was adapted and applied to the Welte “Philharmonic Autograph Organ”. This was the forerunner of the “Welte-Philharmonie Organ” which was first publicly displayed at the Turin Exhibition of 1911. The firm then went on to successfully market player organs, cinema organs and, later, when their market contracted during the 1930s, church organs. They concurrently produced rolls of performances by the greatest organists of the day and sold them with considerable commercial success. From 1865-1917 they also ran a branch in New York (M. Welte & Sons) under Emil Welte (1841-1923, eldest son of the founder), but it was closed during World War I as an “alien enterprise”. Welte’s instruments became status symbols and the epitome of entertainment in their day. They were installed in stately houses, palaces, schools, department stores (Harrods in London had one), yachts, ships (one was manufactured just too late to be aboard the Titanic) and even apparently a “house of pleasure” (the Atlantic Garden orchestrion). Around the world they were dispersed throughout Europe, USA, with their market is known to have extended much further – to Istanbul, Russia, China and Sumatra for example. The top of Welte’s Orchestrion/player-organ range was the “Welte-Philharmonie”. Very few of the full- sized model were ever manufactured. From about 1926 Welte began to be threatened by a rapidly growing radio and recording industry. Business declined so much that, in 1932 they narrowly escaped bankruptcy. At about this time they were also involved in a collaboration with the Telefunken Company which was terminated because Edwin Welte’s first wife, Betty Dreyfuss, was Jewish. This stalled collaboration involved the development of electronic organs. Using (analog) sampling and photo-cells, truly prophetic developments at that time, had Welte been successful they might well have eliminated the Hammond organ from the pages of history. It was World War II which finally precipitated the total demise of the firm. The Freiburg premises – all stock, instruments and historical documents – were effectively annihilated by British bombing in November 1944. The bombed out factory was something of a landmark by the Freiburg railway station for at least decade until the mid-1950s.  (from: Museum of Music Automatons Seewen)

Sources

Museum of Music Automatons Seewen (http://www.musee-suisse.ch/seewen)

Michael Gerhard Kaufmann : Organ and National Socialism. Kleinblittersdorf 1997. ISBN 3-920670-36-1 .

The ‘Melodium’. Harald Bode, Germany, 1938

The "Melodium" (1938)

The “Melodium” (1938)

Bode’s second instrument, previewed in 1938 was a monophonic touch sensitive keyboard instrument, the ‘Melodium’, developed with the assistance of Oskar Vierling, inventor of the ‘Grosstonorgel’. The instrument was used extensively for film music and ‘light music’ during the 1940′s.
Bode had designed oscillators with good pitch stability given the technology of the time, but he realized that a monophonic instrument would present far fewer tuning problems than his radical Warbo Organ. Like all good designers, Bode understood the necessity for providing increased nuance capability in a solo instrument; hence, touch sensitivity. The Melodium had a 49-note keyboard (low-note priority). But unlike traditional keyboards, each key had a fulcrum, or pivot point, not at the rear of the key, but at its midpoint. Each key was an individual little teeter-totter; when the performer depressed any key, he or she could seesaw a long aluminium rail located at the rear of all keys up and down. This rail made contact with a strip of felt soaked in glycerine — a so-called “liquid potentiometer.” Depression of the felt altered the electrical resistance between two electrodes, providing loudness control. This was a direct keying system that should not be confused with modern force-sensitive keyboards found on certain synthesizers. On the Melodium, the actual onset of sound was begun like it is on most acoustic instruments: as a function of the performer’s continuously variable mechanical effort. This is unlike most of today’s synthesizers; they have electronic envelope generators with fixed time constants for attack and release. Even when a synthesizer is force-sensitive, this sensitivity is usually in conjunction with the unvarying envelope generator attack and release. (Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68) )

The articulation on the Melodium has been likened to that of Franklin’s Glass Harmonica, an instrument having rotating glass disks that are played with moistened fingers. This characteristic singing (slow) attack, and the tone colours produced by formant filters borrowed from the earlier four-note organ, made the Melodium an expressive and colourful instrument that found public acceptance. Bode says:

… it was a very responsive instrument to the response of the artist, although it didn’t have these automatic — or maybe because it didn’t have these automatic [envelope] — controls.” Harald Bode

Due to its unorthodox design, the Melodium was not suitable for mass production; it found public acceptance through its rental for film scores, stage plays and on German radio. It enjoyed a considerable vogue with German film score composers. The brief career of the Melodium ended in 1941 due to the war; eventually Bode had to cannibalize the instrument due to the scarcity of electronic components.

The "Melodium" (1938)

The “Melodium” (1938)

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.

 


Sources

Bode’s Melodium and Melochord by Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68) 

The ‘Kaleidophon’ Jörg Mager, Germany, 1939

Jörg (Georg Adam) Eichstätt Mager born November 6, 1880 Aschaffenburg, Bavaria, Died Aschaffenburg 1939

Jörg (Georg Adam) Eichstätt Mager born November 6, 1880 Aschaffenburg, Bavaria, Died Aschaffenburg 1939

Little information survives of Jörg Mager’s last instrument the ‘Kaleidophon’ which he completed in 1939. The instrument was probably destroyed by allied bombing of Mager’s Darmstadt headquarters. The only references survives as notess “…a monophonic electronic instrument with kaleidoscopic sound mixtures following the tonal precepts of Arnold Schoenberg and Ferruccio Busoni.”

More on Jörg Mager here

The ‘Tuttivox’ or ‘Bode Clavioline’. Harald Bode, Germany,1946

Tuttivox Orchestra

Tuttivox Orchestra – with a bode Organ in the background

The Tuttivox was essentially a polyphonic German licensed version of Raymond Martin’s Clavioline, manufactured by the Danish company  Jörgensen Electronics, in Düsseldorf, Germany . This updated Clavioline was created by the pioneering German engineer, Harald Bode. The Tuttivox was a small portable one keyboard, amplifier and speaker combination buitl into a wooden carrying case. the keyboard was usually played attached to a piano and intended for use with commercial dance and popular music bands of the day. the instrument created it’s sound using fourtyE- series valves;  thirty six as audio oscillators with filtering provided by coils and capacitors. There are 3 foot positions available and 36 filter settings, which could be combined to enable a variety of tone colors. the Tuttivox remained in production until the 1960s.
abocab_fig08_joergensen
Bode, in collaboration with French instrument maker René Seybold, later developed an extended version of the Clavioline with an extra two octaves on the keyboard called the ‘Concert Clavioline’ and a combination of the Concert Clavioline and the Tuttivox was marketed as the ‘Combichord’ “The smallest church organ in the world”.

Sounds of the Tuttivox/Bode Clavioline

(0:32). An ensemble of claviolines performing dance music with a range of orchestral sounds. From the Jörgensen (Düsseldorf) promotional tape, “6 Claviolines”.

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.


Sources:

Tuttivox Homepage: http://users.informatik.haw-hamburg.de/%7Ewindle_c/TableHooters/instruments.html

http://weltenschule.de/TableHooters/Joergensen_Clavioline.html

The ‘Melochord’, Harald Bode, Germany, 1947

Harld Bode's Melochord

Harld Bode’s Melochord of 1947

The Melochord was a post-war  development of  Bodes’ earlier Melodium, which, due to it’s complexity and unorthodox design wasn’t suitable for mass production. After the war, Bode cannibalised parts from the Melodium to build the Melochord, a monophonic keyboard instrument based on vacuum tube technology. The keyboard used pitches derived from the traditional equal-tempered 12 note scale with switches extending the 37 note range from three octaves to seven. A foot pedal allowed overall control of the volume and a novel electronically operated envelope shaper could be triggered for each key.
“…So from 1939 to 1945 I didn’t do anything other than writing a few publications on the field of electronic music. In 1947, when we finally got out of the mess of the post-war period, I created the Melochord. It was originally intended as an instrument which combined melody and chord capability all in one manual, but I then decided to use two voices on this one manual and split up a five-octave keyboard in such a way that the upper three octaves were assigned to one generator and the lower two octaves assigned to another generator. It was designed so that those two portions of the keyboard were independent, so they went to separate tone shaping means and to separate expression pedals, and the voices were arranged to allow for voice crossings. It was used on the German Broadcasting System, especially in Munich. It was not a production instrument (commercial product, that is), it was built and used by myself and was leased out to movie companies and for use in recordings with bands. It was also featured in a band I travelled with (as well as recorded with) in Germany. A second Melochord was commissioned by the Bonn University through Meyer-Eppler, who also initiated the work of Dr. Enkel at the Cologne Electronic Music Studio. This is how the Melochord was commissioned by the Cologne Electronic Music Studio. It was used by Karlheinz Stockhausen thereafter. Also, a Melochord was built for use by the NWDR in Hamburg and for a theatre in Munich, and a few others but it was not a mass production item.”
Interview with Harald Bode, 1980 by SYNE magazine
Later version Melochord

Later version Melochord

A later version incorporated two keyboards the second keyboard being able to control the timbre of the other, a technique used in later modular type synthesizers.The Melochord was used extensively in the early days of the electronic studio at Bonn University by Dr Werner Meyer-Eppler and was later installed at North West German Radio studios in Köln (alongside a Monochord and a simple oscillator and filter system) where it was used by the Elektronische Musik group throughout the 1950′s. Artists who used the Melochord and Monochord at the studio included Herbert Eimert, Robert Beyer, Karel Goeyvarts, György Ligeti, Henri Posseur, Karlheinz Stockhausen and others.

Bode playing the Melochord

Bode playing the Melochord

Despite the instruments technical drawbacks, the Melochord was destined to play a historic role in the future of electronic music, Meyer-Eppler’s visionary and influential work “Klangmodelle” and lectures at Darmstadt New Music School were all based on the Melochord and in 1961 Harald Bode, recognizing the significance of transistor based technology over valve based synthesis, wrote a paper that was to revolutionise electronic musical instruments. Bode’s ideas of modular and miniature self contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others.

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.


Sources

Bode’s Melodium and Melochord by Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68) 

The ‘Monochord’ Dr Freidrich Trautwein. Germany, 1948

 

The Elektronische Monochord at WDR Studio, Köln, 1952

The Elektronische Monochord at NDR Studio, Köln, 1952

The Monochord was commissioned from Dr Freidrich Trautwein, the inventor of the Trautonium, by the Electronic Music studio of North West German Radio studios, Köln to upgrade its synthesis module which consisted at the time of one sine wave generator and filter system. The Monochord was basically a modified concert Trautonium with a monophonic variable pitch interval keyboard controlling a valve based tone generator. The keyboard was pressure sensitive and allowed one hand to play pitched notes while the other changed timbre and variations of the envelope shape. A foot pedal controlled the overall volume output from the machine.

WDR Studio, Köln, 1952

NDR Studio, Köln, 1952


Sources: