‘IPEM’; Institute for Psychoacoustics and Electronic Music Ghent, Hubert Vuylsteke & Walter Landrieu, Belgium, 1963

Walter Landrieu at the IPEM studio

Walter Landrieu at the IPEM studio

IPEM electronic music studio founded in 1963 as a joint venture between the Belgian Radio and Television broadcasting company and the University of Ghent with the objective of operating as both a creative studio, and a research institution – IPEM continues to this day to research into audio and psychoacoustics. One of the first instruments developed was a sine wave generator by Hubert Vuylsteke. His assistant, an engineer called Walter Landrieu, invented a vacuum tube based instrument called the ‘Melowriter’ in 1976 that allowed the musician to create sounds through an 8bit code typewriter style interface.

Melowriter designed by Walter Liandreu

‘Melowriter’ designed by Walter Landrieu


Metaphon Landrieu

Inside the melowriter

Landrieu's electronic organ (based on a design by Hubert Vuylsteke).

Landrieu’s electronic organ (based on a design by Hubert Vuylsteke).

470 compositions were realised at IPEM between 1963–1987. It is still operational, housed in the University building Technicum, in the same place it was founded.



IPEM: Institute For Psychoacoustics And Electronic Music: 50 years of Electronic And Electroacoustic Music At The Ghent University is published by Metaphon, and comes with 2CDs of music made at the studio between 1963 and 1999. More details on the book here.

The ‘Clavivox’ Raymond Scott, USA, 1952

Raymond Scott's Clavivox

Raymond Scott’s Clavivox

The Clavivox was invented by the composer and engineer Raymond Scott circa 1950. Scott was the leader of the Raymond Scott Quintet working originally for the CBS radio house band and later composing eccentric but brilliant scores for cartoons for Warner Bros such as ‘Loony Tunes’ and ‘Merrie Melodies’. Scott incorporated elements of Jazz, Swing, pop music and avant-garde modern music into his compositions using a highly personal and unusual form of notation and editing. To the exasperation of his musicians, Scott would record all the band sessions on lacquer discs and later, using a cut and paste technique, edit blocks of music together into complex and almost unplayable compositions.In the 1946 Scott founded Manhattan Research, a commercial electronic music studio designed and built by Raymond Scott, featuring Scott’s own electronic devices and other electronic instruments of the period. The studio had many unique sound processors and generators including ‘infinitely variable envelope shapers’, ‘infinitaly variable ring modulators’, ‘chromatic electronic drum generators’ and ‘variable wave shape generators’. Scott built his first electronic musical instrument in 1948 dubbed ‘The Karloff’ this machine was designed to create sound effects for advertisements and films and was said to be able to imitate sounds such as voice sounds, the sizzle of frying steak and jungle drums.

Raymond Scott in his studio with the Clavivox

Raymond Scott in his studio with the Clavivox

In the 1950′s Scott started to develop a commercial keyboard instrument the Clavivox or keyboard Theremin (completed circa 1956). The Clavivox was a vacuum tube oscillator instrument controlled by a three octave keyboard (with a sub assembly circuit designed by a young Bob Moog). The instrument was designed to simulate the continuous gliding tone of the Theremin but be playable with a keyboard. The machine was fitted with three ‘key’ controls on the left of the keyboard that controlled the attack of the note or cut of the note completely, these keys could be played with the left hand to give the enevelope characteristics of the note. Other controls on the Clavivox’s front panel were for fine and coarse tuning and vibrato speed and depth. Scott used the Clavivox in his cartoon scores for sound effects (similar to the ‘eerie whine’ of the Theremin) and stringand vocal sounds. The Clavivox was inteneded for mass production but the complexity and fragility of the instrument made this venture impractical.

During the 1960′s Scott built a number of electronic one off instruments and began experimenting with analogue pitch sequencing devices. One of the prototype instruments built during the sixties was a huge machine standing six feet high and covering 30 feet of scott’s studio wall. The pitch sequencer was built using hundreds of telephone exchange type switch relays and the sounds were generated from a bank of 16 oscillators, a modified Hammond organ, an Ondes Martenot and two Clavivoxes. The noise produced by the clicking switches had to be dampened by a thick layer of audio insulation.Scott used the machine to compose several early electronic music pieces in the 1960′s including three volumes of synthesised lullabys “Soothing Sounds for Baby” (1963) predating minimalist music’s (Phillip Glass, Steve Reich) use of repetition and sequences by 20 years.

Trailer of’Deconstructing Dad‘ a documentary on Raymond Scott.

Scott’s final and most ambitious machine christened the ‘ Electronium’ (not to be confused with the Hohner Electronium ) was the culmination of his work using pitch and rhythm sequencers (the design used a number of Moog-designed components, who had also contributed to the Clavivox) . Scott described the machine as an;

“instantaneous composition-performance machine, The Electronium is not a synthesizer — there is no keyboard [it was manipulated with knobs and switches] — and it cannot be used for the performance of existing music. The instrument is designed solely for the simultaneous and instantaneous composition-performance of musical works”

Raymond Scott

In 1972, Scott became the head of electronic music research and development for Motown Records. After his retirement, Scott used MIDI technology to continue composing until 1987, when he suffered the first of several debilitating strokes. Raymond Scott died in 1994.

Raymond Scott: born Harry Warnow September 10, 1908, Brooklyn,NY

Raymond Scott: born Harry Warnow September 10, 1908, Brooklyn, NY, February 8, Died 1994 North Hills, Los Angeles, California



The Raymond Scott Archive. P O Box 6258,Hoboken.New Jersey 07030. USA.

The ‘Siemens Synthesiser’ H.Klein & W.Schaaf. Germany, 1959

Siemens Studio

Siemens Studio

The Siemens Synthesiser or ‘Siemens Studio For Electronic Music’ was a German development similar to the RCA Synthesiser originally to compose live electronic music for Siemens’s own promotional documentary films. Like the RCA MkII, The Siemens Studio was a modular ‘composition and synthesis system’ that generated musical sequences and synthesised and recorded the results. The Siemens Synthesiser was developed by Helmut Klein and W.Schaaf at Siemens Halske in Munich, Germany in 1959 for the Studio Für Elektronische Musik in Munich. The Siemens system linked and controlled the studio using a similar system to the RCA Synthesiser, a set of four punch paper vari-speed rolls controlling the timbre, envelope, pitch and volume of a bank of 20 oscillators, a white noise generator, a Hohnerola (a hybrid electronically amplified reed instrument marketed by Hohner-similar to the ‘Multimonica‘) and an impulse generator. The synthesiser had a tonal range of seven octaves.

Siemens studio Equipment:

Tone Generation

  1. Hohnerola: “An electronic tongue-instrument of 84 tones from C to H”
  2. An impulse or sawtooth generator with 84 tones
  3. 1 white noise generator
  4. A generator for statistic impulses which are made from white noise with the help of a trigger
  5. 4 sine tone generators [20 - 20'000 Hz]
  6. 20 special sine generators. These generators a 3 frequency spectrum, from 1r5 – 160 Hz, 150 – 1600 Hz and 1500 – 16000 Hz, with the option of continual change from sine to square wave.
  7. A tone generator based on photo-electric principles

Tone Modulators

  1. Analogue reverb
  2. Echo delay
  3. Pitch transformer
  4. Echo frequency transformer
  5. Vocoder
Programming with the 'Semi Automatic Hole-strip Punching Machine' (left: the coding console. right: the hole puncing machine)

Programming with the ‘Semi Automatic Hole-strip Punching Machine’
(left: the coding console. right: the hole puncing machine)

Additional input devices were also developed for the Siemens Synthesiser; a drawn sound technique (photoelectrically generated sounds) allowed the scanning of photographic slides using Siemens’s specially designed ‘Bildabtaster’ technology. The German painter Günter Maas used this device to translate several of his paintings into musical compositions. Later models also had a Siemens Vocoder built in as a sound controller uniquely for its time, allowing the musician to give the sound vocal envelope characteristics.

The machine room at the 'Studio for Electronic Music' (L-R:punch-paper controller, 2 four channel magnetic tape recorders, 'Bildabtaster' picture-scanner.  Foreground:2 Master magnetic tape machines)

The machine room at the ‘Studio for Electronic Music’
(L-R:punch-paper controller, 2 four channel magnetic tape recorders, ‘Bildabtaster’ picture-scanner.
Foreground:2 Master magnetic tape machines)

The development of the Siemens synthesiser continued after the Munich studio had relocated to Ulm and came to an end when the studio was dissolved in 1969. The Siemens system was used by many European experimental composers throughout the 50′s and 60′s including Mauricio Kagel, Bengt Hambreus, Milko Kelemen and the director of the Munich Studio Für Elektronische Musik, Josef Anton Riedl.

The punch-paper strip controller (Lochstreifen-Schnellsender) A synchronous-motor moves the paper strips across the reader. The 4 parallel moving strips are read by removeable steel wire brushes. The system can also be run in reverse.

The punch-paper strip controller (Lochstreifen-Schnellsender)
A synchronous-motor moves the paper strips across the reader. The 4 parallel moving strips are read by removeable steel wire brushes. The system can also be run in reverse.

Diagram explaining the punch-tape coding for the Seimens Studio

Diagram explaining the punch-tape coding for the Seimens Studio

Coding of the Punch-tape reader:

  1. Pitch: The pitch is defined by two strips. One strip chooses the octave, the second the tones within the octave. There are 7 octaves , and 12 tones within those octaves, making 84 tones in total. They can be chosen in fixed tuning with the electronic tuner or in a tuning that can freely be chosen with the impulse generator and sine generators. Combinations allow the choice of several different generators.
  2. Volume: The volume can be defined in 32 steps of 1,5 dB.
  3. Timbre: The colouring (timbre) by a choice of 14 band filters or filter combinations
  4. Duration: The duration of the signal is defined by the number of equal hole combinations in connection with the reading speed of the punch-paper strip. There are three different speed settings of the paper strip, 64, 90 or 128 signals a second. The normal speed is 64 signals per second, i.e. a duration of 16 ms per signal. The duration is a quarter note, played in Mäzel’s Metronome MM = 120, is 0,5 s which equates to 32 equivalent hole combinations, an eighth note is then 16, a sixteenth note 8 hole combination.


H.Klein:”Uber ein Apparatur zur Steuerung und Verformung von Klängen”,Nachrichtentechnische Fachberichte,cv(1959),31 Répertoire international des musiques expérimentales (Paris,1962),36.

The Siemens Museum Website

Images and details provided by Siemens Aktiengesellschaft, Siemens Forum, München.

“Klangsynthese und Klanganalyse im elektronischen Studio”, Siemens & Halske Aktiengesellschaft 1962

‘Milan Electronic Music Studio’ or ”RAI Studio of Phonology’ , Marino Zuccheri & Alfredo Lietti. Italy, 1955

MIlan Electronic Music Studio

Milan Electronic Music Studio

The Milan Electronic Music Studio or  ‘RAI Studio of  Phonology’ was designed by Alfredo Lietti in 1955 with the guidance of the musicians Luciano Berio and Bruno Maderna, and remained in use until 1983. In 2011 the entire studio was archived at the Municipal Collections of the Castello Sforzesco.

'RAI Studio of  Phonology

Marino Zuccheri at RAI Studio of Phonology

The studio was primarily created to produce experimental electronic music but also to create effects and soundtracks for film and TV (and was the model for the 2012 film Berberian Sound Studio). Berio drew inspiration from the working methods of American serialist composers Ussachevsky and Otto Luening at the Columbia University Computer Music Center and from GRMC in Paris through his friendship with Pierre Schaeffer and the Club d’Essai. Maderna’s influence came through his time studying at the Darmstadt summer school with Stockhausen and Meyer-Eppler.


Berio, Zuccheri, Maderna, Lietti, Castelnuovo at the RAI Phonology Studio Milan

At he beginning in 1955 the studio consisted of a few variable speed tape recorder, some filters, an oscillator and an Ondes Martenot. This soon changed with the acquisition of eight sine and square wave oscillators (  the ‘ninth oscillator’ being the voice of  Cathy Berberian. Luciano Berio’s works of this period with Cathy Berberian include Thema (Omaggio a Joyce) and Visage), pulse and white noise generators. These generators were patched manually through a bank of processors; modulators ( including the ‘Tempophon’ a tape device with rotating heads that allowed to vary the duration of the playback of a previously recorded sound, while maintaining the original pitch ), frequency shifters, filters and various types of echo and reverberation units. The output from the studio was monitored on a system of five speakers and recorded to a four-track tape recorder.

“Two of the first electronic works in my record collection – Berio’s Visage from 1961, and John Cage’s Fontana Mix from 1958 – were created there with Zuccheri (Designer and technician at the RAI Studio) . Even today, both of these pieces sound impressively vivid and dynamic, and what we should now recognise is that such qualities should be attributed to the technician as much as to the composer.”
David Toop, The Wire, 2008

Musicians and composers who worked at the studio include Berio, Maderna, Nono, Castiglioni, Clementi, Donatoni , Gentilucci, Manzoni , Marinuzzi Jr., Paccagnini Sciarrino, Sinopoli, Togni , Cage and Pousseur.

Marino Zuccheri and Luigi Nono - courtesy of Fondazione Archivio LN

Marino Zuccheri and Luigi Nono – courtesy of Fondazione Archivio LN

“… I like remembering Marino in his Phonology Studio, master among masters, master of sound among masters of music, because sound for him did not have any secrets, since he was trained in auditoriums while working for the Radio together with the most famous directors of the time. He would always recall how he begun working in Phonology by chance, but it is certain that it wasn’t because of chance that he continued during the years, considering he’s been the only holder of the Studio from when it was created (1955) until it closed down (1983).”
Giovanni Belletti, “Marino Zuccheri in Fonologia”, 2008

Images of the Milan Electronic Music Studio