‘Clavecin Électrique’ . Jean-Baptiste Delaborde, France. 1759.

 

Clavecin Électrique

Clavecin Électrique Jean-Baptiste Delaborde, Paris, France, 1759

Built by the Jesuit priest Jean-Baptiste Delaborde in Paris, France, 1759, the Clavecine Électrique or the ‘Electric Harpsichord’ is one of the earliest documented  instruments that used electricity to create musical sound. . Despite it’s name The Clavecin Électrique was not a stringed instrument but a carillon type keyboard instrument using a static electrical charge (supplied by a Leyden Jar, an early form of capacitor invented by the Dutch scientist Pieter van Musschenbroek of Leiden around 1745) to vibrate metal bells – The mechanism  based on a contemporary warning-bell device (1). This method allowed the player to create a series sustained notes from the bells, similar to an organ:

Two metal bells tuned in unison are hung, one with a silk thread, one with a wire onto a metal rod itself both hanging free by means of a silk thread at each end. Based on the principles of static electricity a beater, also hung on a silk thread is alternately attracted and rejected by each bell as soon at is released through holding down a key, n  positive and negative fields being created in the bells.
(“The Harpsichord and Clavichord: An Encyclopedia” Ferdinand J.De Hen p71 Routledge 2007)
Jean-Baptiste de Laborde's book describing the Clavesin “Le Clavessin électrique; avec une nouvelle théorie du mécanisme et des phénomènes de l’électricité”

Jean-Baptiste de Laborde’s book describing the Clavesin “Le Clavessin électrique; avec une nouvelle théorie du mécanisme et des phénomènes de l’électricité”

Delaborde’s misleading name of the instrument was an intentional attempt to elevate his invention above that of a Carillon – a mere musical-box:
“The electrical matter has something of the soul, as air is to the body, the guardian of the bellows globe, and ‘the conductor of the wind-door. The key is in the organ as a brake, with which moderates the effect of the air, I posed the same brake on the electric matter, despite his sensitivity, his agility. The air trapped in the organ there groaning, so long as the organist, as another Aeolus, opened the doors of his prison. If at the same time he took away all the barriers that stop, another would not produce a great confusion and disorder, but he does it Sorting [...] with discernment. The electrical matter abode even as it locked up, and you feel unnecessarily around the bells of the new harpsichord, to the extent that is given the freedom, coll’abbassare the keys: it then becomes with great rapidity, but ceases d ‘ operate, as soon as the keys reassemble. This kind of cymbal hath also an advantage that others do not have, that is that where it ‘cymbals ordinarj the non-continuous sound weakening; electric organ and harpsichord retains all the strength that the fingers remain on the keys. “
Delaborde added that during a performance in a dark room the listener’s “eyes are agreeably surprised by the brilliant sparks” that were produced by the instrument and that “the clavessin became at the same time audible and visible” . This phenomena may have lead to the creation of the Clavecin Oculaire by the fellow Jesuit Louis Bertrand Castel, an early exploration of the relationship between pitch and colour. The Clavecine Électrique was well received by the press and the public but wasn’t developed further. The model Delaborde himself built survives and is kept at the Bibliothèque nationale de France in Paris.
The Clavessin électrique at the Bibliothèque nationale de France in Paris

The Clavessin électrique at the Bibliothèque nationale de France in Paris

Description of the Clavecin by Marc Michel Rey, 1759 in his "Le journal des sçavans, combiné avec les mémoires de Trévoux"

Description of the Clavecin by Marc Michel Rey, 1759 in his “Le journal des sçavans, combiné avec les mémoires de Trévoux”

Notes
(1) “The warning bell mechanism was based on an apparently unnamed method used in early electrical laboratories to audibly warn an experimenter of the presence of an electrical charge; it was probably invented by Andreas [Andrew] Gordon in Erfurt in 1741 and was described or demonstrated to Benjamin Franklin in Boston in 1746. An eight-bell instrument based on this principle was developed in about 1747 by Ebenezer Kinnersley, an associate of Franklin in Philadelphia, and the device subsequently received substantial publicity when it was mentioned in Franklin’s publication of his experiments with atmospheric electricity. Nearly 80 years were to elapse before the next sounds were produced by electricity.”
(Davis, Hugh.The New Grove Dictionary of Music and Musicians)
___________________________________________________

Sources

Collins, Nicholas. “Electronic Music”  , Margaret Schedel, Scott Wilson

Laborde, Jean-Baptiste de, “Le Clavessin électrique; avec une nouvelle théorie du mécanisme et des phénomènes de l’électricité”. Réimpression de l’édition de Paris, Guérin, Delatour, 1761. Genève, 1997. 1 volume in-16 de 192 pages, broché.

Schiffer, Michael; Hollenback, Kasy; and Bell, Carrie. 2003. Draw the Lightning Down: Benjamin Franklin and Electrical Technology In the Age of Enlightenment. University of California Press. ISBN 978-0-520-23802-2

“Le journal des sçavans, combiné avec les mémoires de Trévoux”, Volumes 45-46

“Dictionnaire des origines, decouvertes, inventions et …”, Volume 1  Antoine et Prefort Sabatier de Castres (l’abbe Bassin de), l’abbe Bassin de Prefort

“Les jésuites et la musique: le Collège de la Trinité à Lyon”, 1565-1762 Pierre Guillot

“Mémoires pour l’histoire des sciences et des beaux-arts”, Volume 236; Volume 1759

‘Electromechanical Piano’ Matthias Hipp, Switzerland,1867

Matthias Hipp

Matthias Hipp ” The Swiss Edison” 25.10.1813 – 3.5.1893

Matthias Hipp’s many inventions and adaptations include; Chronoscopes, Chronographs, Galvanometers, railway signalling equipment, watch and clock mechanisms, Telegraphic time detectors, telexes, networked electronic clocks, fire alarms, Microphones, Seismographs, electronic Gyroscopes and possibly the first ‘real’ electronic musical instrument.

In 1867 Hipp created an ‘Electromechanical Piano’. How this instrument operated is unclear, no contemporary records exist that describe the instrument in any detail but modern texts suggest that it was a ‘true’ electronic instrument, generating sounds through multiple dynamos:

“Going back to the first electrical instruments, the conception of the electromechanic piano is due to Hipps (whose first name is unknown). This instrument was essentially composed of a keyboard which would activate some electrical magnets.These in their own right would activate some dynamos (small electrical current generators), the devices actually responsible for sound production. They were the same dynamos which, almost a century later, would be used in Cahill’s Teleharmonium”
Andreas Baroni: “A brief History of Synthesizers”

“Electromechanical Piano – Developed by Hipps (first name unknown) who was a director of the telegraph factory in Neuchatel, Switzerland. The keyboard activated electromagnets that activated dynamos (small electric generators), which produced sound. Dynamos where later used in Thaddeus Cahill’s Dynamophone (also known as the Telharmonium).”

Kevin M Walczyk  “Electroacoustic Music A brief historical outline and recorded anthology”

or more prosaically, simply an electronically controlled player-piano:

“Electricity was used to operate player pianos from about 1850, and the basis for many later systems was developed by Matthäus Hipp of Neuchâtel in his ‘electromechanical piano’ of 1867″

Hugh Davies. New Grove Dictionary of Music and Musicians.

Another possible method could be that Hipp extended the mechanism of the Hipp Chronoscope. The Chronoscope was an electronic clock designed to measure micro-events based around an escape mechanism regulated by a high frequency vibrating metal tine (rather than a pendulum). The problem was that to be accurate, the metal tines had to vibrate at a constant frequency of  1000hz and at the time the only way to calibrate was to hire a piano tuner who could hear the difference (phase) between a known 1000hz pitch tuning fork:

“We all know that some piano tuners are prodigiously accurate, and we can presume that similar paragons staffed the tuning fork manufactures of 19th century Europe. However, any physics course will show you that tuning forks have an easier potential for high accuracy of frequencies than many other devices. This potential is found in the audible phenomenon of beats, in which two tuning forks which are very slightly different will produce a signal of varying loudness. The frequency of this varying loudness is the difference in frequency of the two forks, thus permitting easy adjustment of the erring fork.”

Edward J. Haupt Montclair State University

By simply changing the voltage supply to the metal tines via a keyboard, Hipp would have been able to create a scaled set of frequencies. Whatever technique Hipp used, the Electromechanical Piano seems to have been a one-off curio for Hipp, it doesn’t appear anywhere alongside the more commercial inventions in his illustrated catalogues of the period or in the inventory of the Neuchatel Telegraph factory.

Military balistic experiments using the Hipp Chronoscope

Military ballistic experiments using the Hipp Chronoscope

 

 

Illustrated catalogue from the Neuchatel Telegraph Factory showing numerous inventions of Matthias Hipp c1869

Part of and illustrated catalogue from the Neuchatel Telegraph Factory showing numerous inventions of Matthias Hipp …but with no mention of the Electromechanical Piano. c1869

____________________________

Sources

Hugh Davies. New Grove Dictionary of Music and Musicians. Macmillan Publishers Ltd

“Electroacoustic Music A brief historical outline and recorded anthology”. Kevin M Walczyk , Western Oregon University. 1997, Keveli Music

Andreas Baroni: “A brief History of Synthesizers”

‘The Hipp Chronoscope’. Dr Thomas Schraven, Krefeld. 2003

‘The Controversy between G. E. Mller and Wilhelm Wundt over the proper measurement of reaction time’. Edward J. Haupt , Montclair State University 1999.

Links

Biography of M.Hipp http://www.medienkultur.org/sm1/gdg/ha/ 

The ‘Musical Telegraph’ Elisha Gray. USA, 1876

Elisha Gray using a violin as a resonating amplifier for his Musical Telegraph

Elisha Gray using a violin as a resonating amplifier for his Musical Telegraph

Elisha Gray (born in Barnesville, Ohio, on Aug. 2, 1835, died Newtonville, Mass., on Jan. 21, 1901) would have been known to us as the inventor of the telephone if Alexander Graham bell hadn’t got to the patent office one hour before him. Instead, he goes down in history as the accidental creator of one of the first electronic musical instruments – a chance by-product of his telephone technology.

Elisha Grays patent for the Singing Arc

Elisha Grays patent for the Singing Arc

gray_patent_02

Elisha Gray’s Patent for the ‘Musical Telegraph’ 1876

Gray accidentally discovered that he could control sound from a self vibrating electromagnetic circuit and in doing so invented a basic single note oscillator. Using this principle he designed a musical instrument; The ‘Musical Telegraph’.

Elisha Gray's Musical Telegraph keyboard transmitter.

Elisha Gray’s Musical Telegraph keyboard transmitter.

Gray’s invention used steel reeds whose oscillations were created and transmitted , over a telephone line, by electromagnets. Gray also built a simple loudspeaker device in later models consisting of a vibrating diaphragm in a magnetic field to make the oscillator audible.After many years of litigation, A.G.Bell was legally named the inventor of the telephone and in 1872, Gray founded the Western Electric Manufacturing Company, parent firm of the present Western Electric Company. Two years later he retired to continue independent research and invention and to teach at Oberlin College.

Performance of the Musical Telegraph

Elisha Gray gave the first public demonstration of his invention for transmitting musical tones at the Presbyterian Church in Highland Park, Illinois on December 29, 1874 and transmitted “familiar melodies through telegraph wire” according to a newspaper announcement– possibly using a piano as a resonating amplifier.

Elisha Gray’s first “musical telegraph” or “harmonic telegraph” contained enough single-tone oscillators to play two octaves and later models were equipped with a simple tone wheel control. Gray took the instrument on tour with him in 1874. Alexander Graham Bell also designed an experimental ‘ Electric Harp’ for speach transmission over a telephone line using similar technology to Gray’s.

Gray's patent for the Musical Telegraph

Gray’s patent for the Musical Telegraph

gray2c

Biographical Information:

Elisha Gray, the American inventor, who contested the invention of the telephone with Alexander Graham Bell. He was born in Barnesville, Ohio, on Aug. 2, 1835, and was brought up on a farm. He had to leave school early because of the death of his father, but later completed preparatory school and two years at Oberlin College while supporting himself as a carpenter. At college he became fascinated by electricity, and in 1867 he received a patent for an improved telegraph relay. During the rest of his life he was granted patents on about 70 other inventions, including the Telautograph (1888), an electrical device for reproducing writing at a distance.On Feb. 14, 1876, Gray filed with the U.S. Patent Office a caveat (an announcement of an invention he expected soon to patent) describing apparatus ‘for transmitting vocal sounds telegraphically.’ Unknown to Gray, Bell had only two hours earlier applied for an actual patent on an apparatus to accomplish the same end. It was later discovered, however, that the apparatus described in Gray’s caveat would have worked, while that in Bell’s patent would not have. After years of litigation, Bell was legally named the inventor of the telephone, although to many the question of who should be credited with the invention remained debatable.In 1872, Gray founded the Western Electric Manufacturing Company, parent firm of the present Western Electric Company. Two years later he retired to continue independent research and invention and to teach at Oberlin College. He died in Newtonville, Mass., on Jan. 21, 1901.”


Sources:

(Kenneth M. Swezey [author of "Science Shows You How"] The Encyclopedia Americana — International Edition Vol. 13. Danbury, Connecticut: Grolier Incorporated, 1995. 211)”