The Synclavier I & II. Jon Appleton, Sydney Alonso & Cameron Jones. USA, 1977

Late version of the Synclavier II

Late version of the Synclavier II 9600TS system with an Apple Macintosh running a terminal emulator

The Synclavier I was the first commercial digital FM synthesiser and music workstation launched by the New England Digital Corporation (NED) of Norwich, Vermont, USA in 1978. The system was designed by the composer and professor of Digital Electronics at Dartmouth College, Jon Appleton with software programmer, Sydney Alonso and Cameron Jones, a student at the time at Dartmouth School of Engineering.

The origins of the Synclavier began when Cameron Jones and Sydney Alonso started to develop software and hardware for electronic music for John Appleton’s electronic music course at Dartmouth. After graduation Jones and Alonso developed a 16-bit processor card and a new compiler to create their ‘ABLE’  computer, NED’s first product, sold to institutions for data collection applications. The first musical application developed by NED was the ‘Dartmouth Digital Synthesiser’ based around the  ABLE microprocessor which was released as a production model Synclavier I in 1977. The new device was intended as a fully-integrated, high end music production system rather than an instrument and sold for $200,000 to $500,000, way beyond the reach of most musicians and recording studios.

Synclavier 1

Synclavier 1 with the VT100 Computer

The synclavier 1 was an FM synthesis based keyboard-less sound module, and was only programmable via a DEC VT100 computer supplied with the system. This version was quickly replaced by the integrated keyboard Synclavier II in 1979. The model II was a FM/Additive hybrid synthesiser with a 32 track digital sequencer memory and was the first musical device aimed at creating an integrated ‘tapeless studio’. The Syncalvier II was equally expensive echoing the fact that almost all of the components were either sourced from hardware developed for military uses or were custom designed and built by NED themselves. NED designed the system to be as robust as possible, built around their own ABLE computer hardware (as a testament to this durability, NASA chose the ABLE computer to run the onboard systems of the Gallileo space probe which in fourteen years travelled to the edges of the solar system – eight years longer than the original mission plan)

Synclavier-II ORK keyboard

Synclavier-II ORK keyboard

The instrument was controlled by a standard ‘ORK’ on-off keyboard and edited by the same DEC VT100 (later a VT640) computer as well as via a distinctive set of multiple red buttons (the same lights used in B52 bomber aircraft, chosen for durability) and rotary dial that allowed the user to edit straight from the keyboard and get visual feedback on the state of the instrument’s parameters. The keyboard was soon replaced in the new PSMT model by a ‘VPK’ weighted, velocity sensitive manual licensed from Sequential Circuits (the same keyboard as the Prophet T8) that dramatically improved the playability of the instrument.

Synclavier II PSMT

Synclavier II PSMT

The Synclavier II was a 64 voice polyphonic modular digital synthesiser; the user purchased a selection of individual cards for each function making it easy to expand and repair. In 1982 a digital 16 bit sample facility was added that allowed the user to not only sample but re-synthesise samples using FM, making the Synclavier one of the earliest digital samplers (The Fairlight CMI being the first) and in 1984 a direct to disk digital audio recording, sample to (32MB) memory, 200 track sequencer, guitar interface, MIDI and SMPTE capability were included making the Synclavier II an extremely powerful (but very expensive) integrated audio production tool. The instrument became a fixture of high-end music and soundtrack production studios – and is still in use by many. The Synclavier is instantly recognisable on many 1980 film and pop hits; used by artists such as Depeche Mode, Michael Jackson, Laurie Anderson, Herbie Hancock, Sting, Genesis, David Bowie and many other. The Synclavier was particularly championed by Frank Zappa – one of the few artists who privately owned a Synclavier – who used it extensively on many of his works including m Jazz From Hell and  Civilization, Phaze III:

“What I’ve been waiting for ever since I started writing music was a chance to hear what I wrote played back without mistakes and without a bad attitude. The Synclavier solves the problem for me. Most of the writing I’m doing now is not destined for human hands.”

Frank Zappa

Despite it’s popularity in recording studios the Synclavier inevitably succumbed to competition from increasingly powerful and cheaper personal computers, MIDI synthesisers and low cost digital samplers. New England Digital closed it’s doors in 1992, many of the company assets purchased by Fostex for use in hard-disk recording systems. In 1993, A new Synclavier Company was established by ex-NED employees as a support organisation for existing Synclavier customers.

Images of the Synclavier i & II








Sources:

http://www.500sound.com/uniquesync.html

http://www.synclavier.com/

https://www.facebook.com/SynclavierDigital

The Stylophone , Brian Jarvis, UK, 1967

Stylophone

The Dübreq Stylophone

The Stylophone was a small novelty electronic instrument created in the UK by Brian Jarvis’s Dübreq Company (originally a film production and recording studio specialising in dubbing and recording based in Leeds – the umlaut was added to give the impression of Germanic quality) between 1967 and 1975. The Stylophone was designed to be as cheap as possible to produce and manufacture based around a design with a single oscillator controlled by a metal plate 20 note keyboard printed directly on to the PCB board played by a hand-held stylus.

Rolf Harris and the Stylophone

Rolf Harris and the Stylophone

The instrument had a ‘unique’ sound; a simple buzzing square wave with no envelope control which could be modulated with vibrato via sine wave LFO. Despite it’s simplicity, and due to a marketing campaign featuring Rolf Harris enthusiastically endorsing the device, the Stylophone caught on; during the six years of it’s manufacture, over three million Stylophones were sold (The original Stylophone was sold mail-order for £8 18″6d each, the equivalent of around £95.00 in today’s money). Although intended as a toy, the Stylophone was picked up by a number of musicians of the period – most famously David Bowie on ‘Space Oddity’ (who apparently hated the instrument, loaned to him by Mark Bolan) and Kraftwerk. The instrument has more recently acquired a kitsch retro-nostlagic value and is used by groups such as Pulp, Manic Street Preachers, Belle and Sebastian, Orbital, Hexstatic and many others.

stylophone 350s

stylophone 350s

Stylophone 350S

The 350Swas the big brother of the original Stylophone launched in 1971. The 350s had a larger 44 note metal plate keyboard which could be switched up and down one octave and two styluses. The instrument also had eight voices – Woodwind, Brass and Strings -  as opposed to the original version’s one voice. The 350s’ sound  could be altered with a basic decay control switch and a unique ‘photo control’ – a phot0-optic cell that the user covers with the left hand to modulate the amount of vibrato, low pass filter cutoff and volume creating a wah-wah like effect. Fewer than 3000 units of the 350s were produced and sold.

In 2003 Dübreq was re-launched by Ben Jarvis, son of the original designer leveraging on the retro-kitsch value of the original instrument. Several updated versions of the Stylophone have been released.




Images of the Stylophone

_______________________________________________

Sources:

http://andymurkin.wordpress.com/category/modification/stylophones/

http://stylophonica.com/
http://www.vice.com/en_uk/read/screw-rolf-harris-watch-this-trailer-and-then-the-movie

‘UPIC system’ (Unité Polyagogique Informatique du CEMAMu) Patrick Saint-Jean & Iannis Xenakis, France, 1977.

Iannis Xenakis and the UPIC system

Iannis Xenakis and the UPIC system

Developed by the computer engineer Patrick Saint-Jean directed by the composer Iannis Xenakis at CEMAMu (Centre d’Etudes de Mathématique et Automatique Musicales) in Issy les Moulineaux, Paris, France, UPIC was one of a family of early computer-based graphic controllers for digital music (Other including Max Mathews’ Graphic 1 ) which themselves were based on earlier analogue graphical sound synthesis and composition instruments such as Yevgeny Murzin’s ANS Synthesiser , Daphne Oram’s ’Oramics‘, John Hanert’s ‘Hanert Electric Orchestra’  and much earlier Russian optical synthesis techniques.

UPIC Schematic

UPIC Schematic

Xenakis had been working with computer systems as far back as 1961 using an IBM system to generate mathematical algorithmic scores for ‘Metastaseis’; “It was a program using probabilities, and I did some music with it. I was interested in automating what I had done before, mass events like Metastaseis. So I saw the computer as a tool, a machine that could make easier the things I was working with. And I thought perhaps I could discover new things”. In the late 1960s when computers became powerful enough to handle both graphical input and sound synthesis, Xenakis began developing his ideas for what was to become the UPIC system; an intuitive graphical instrument where the user could draw sound-waves and organise them into a musical score. Xenakis’s dream was to create a device that could  generate all aspects of an electroacoustic composition graphically and free the composer from the complexities of software as well as the restrictions of conventional music notation. 

UPIC Diagram

UPIC Diagram from a film by Patrick Saint Jean in 1976

UPIC consisted of an input device; a large high resolution digitising tablet the actions of which were displayed on a CRT screen, and a computer; for the analysis of the input data and generation and output of the digital sound. Early version of the UPIC system were not able to respond in real time to user input so the composer had to wait until the data was processed and output as audible sound – The UPIC system has subsequently been developed to deliver real-time synthesis and composition and expanded to allow for digitally sampled waveforms as source material, rather than purely synthesised tones.

The UPIC System hardware

The UPIC System hardware

To create sounds, the user drew waveforms or timbres on the input tablet which could then be transposed, reversed, inverted or distorted through various algorithmic processes. These sounds could then be stored and arranged as a graphical score. The overall speed of the composition could be stretched creating compositions of up to an hour or a few seconds.  Essentially, UPIC was a digital version of Yevgeny Murzin’s ANS Synthesiser which allowed the composer to draw on a X/Y axis to generate and organise sounds.

Since it’s first development UPIC has been used by a number of composers including Iannis Xenakis (Mycenae Alpha being the first work completely composed on the system), Jean-Claude Risset (on Saxatile (1992), Takehito Shimazu (Illusions in Desolate Fields (1994), Julio Estrada (on ‘eua’on’), Brigitte Robindoré, Nicola Cisternino and Gerard Pape (CCMIX’s director).

More recent developments of the UPIC project include the French Ministry of Culture sponsored ‘IanniX’ ; an open-source graphic sequencer and HighC; a software graphic synthesiser and sequencer based directly on the UPIC interface.



Images of the UPIC System


Sources:

Iannis Xenakis: Who is He? Joel Chadabe January 2010

http://www.umatic.nl/

http://patrick.saintjean.free.fr/SILOCOMUVI_UPICPSJ2012/CMMM2009-UPIC-CNET-SILOCoMuVi1975-77.html

‘Images of Sound in Xenakis’s Mycenae-Alpha’ Ronald Squibbs, Yale University, rsquibbs @ minerva.cis.yale.edu

IanniX project homepage

The ‘Analyzátor a syntezátor zvuku’ or ‘ASYZ’ Bohumil Matoušek, Antonín ka[...] & Pavel Pitrák, Czech Republic, 1971

The ASYZ 2.0 'Analyzátor a syntezátor zvuku' at the Barrandov Film Studio 1971

The ASYZ 2.0 ‘Analyzátor a syntezátor zvuku’ at the Barrandov Film Studio 1971

The ASYZ was built in the late 1960s at the ‘East European Hollywood’ Barrandov Film Studios in Prague to provide sound effects and electronic music for film productions, with the final version, the ASYZ2 completed in 1971. The instrument was designed by electronic engineers, Antonín ka [name incomplete], Bohumil Matoušek and later by the sound engineer and designer Pavel Pitrák who maintained the instrument throughout the seventies and eighties. The ASYZ remained in use until the 1990s and is now housed at the collection of the Cinepost post production company, Praha.

The original design was a keyboard-less modular type device intended to be used for processing external audio signals and for generating sound effects, the modules being connected using colour coded patch cables. The instrument was controlled by manually switching a rotary dial to select different timbres and pitches or by programming a 16 step three track sequencer, a six octave keyboard was added in the 1990s. The modules of the ASYZ included a Voltage Controlled Oscillator, white noise generator, low and high pass filters, a parametric equaliser, ring modulator, phaser, signal mixer, VCA, ADSR envelope shaper, LFO, random signal generators, envelope followers and auxiliary circuits. The output of the instrument was controlled by a small six-channel mixing console and monitored using a built-in oscilloscope.


Sources:

Milan Guštar. ‘Elektrofony II’

http://czechkeys.blog.cz/

‘ARP’ Synthesisers. Alan Robert Pearlman, USA, 1970

Front panel of the ARP 2500

Front main panel of the ARP 2500

ARP Synthesisers was started by the engineer and musical enthusiast Alan Robert Pearlman – hence ‘ARP’ – in 1970 in Lexington, Massachusetts, USA. Previous to ARP, Pearlman had worked as an engineer at NASA and ran his own company Nexus Research laboratory Inc., a manufacturer of op-amps (precision circuits used in amplifiers and test equipment) which he sold in 1967 to fund the launch of the ARP company in 1969. The inspiration for ARP came after he played with both Moog and Buchla synthesisers and being unimpressed by the tuning instability of the oscillators and lack of commercial focus – especially the keyboard-less Buchla Box – and became determined to produce a stable, friendly, commercial electronic instrument.

“If you would like to spend your time creatively, actively producing new music and sound, rather than fighting your way through a nest of cords, a maze of distracting apparatus, you’ll find the ARP uniquely efficient . . . matrix switch interconnection for patching without patch cords…P.S. The oscillators stay in tune.”
ARP Advert 1970

Slider matrix of the 2500

Slider matrix of the 2500

The first product was the ARP 2500, a large monophonic modular voltage-controlled synthesiser designed along similar lines to the Moog Modular series 100. The 2500 had a main cabinet holding up to 12 modules and two wing-extension adding another six modules each. The interface was designed to be as clear as possible to non-synthesists with a logically laid out front panel and, unlike the Buchla and Moog Modular, dispensed with patch cables in favour of a series of  10X10 slider matrices, leaving the front panel clear of cable clutter. The 2500 also came with a 10-step analogue sequencer far in advance of any other modular system of the day

Despite the fact that the 2500 proved to be an advanced, reliable and user-friendly machine with much more stable and superior oscillators to the Moog, it was not commercially successful, selling only approximately 100 units.

ARP 2500 Modules

ARP 2500 Modules

Modules of the ARP 2500

Module # Type of Module Description
1002 power supply
1003 dual envelope generator This module contains two ADSR envelope generators (actually labeled “Attack”, “Initial Decay”, “Sustain”, and “Final Decay”), each switchable between single or multiple triggering. There is a manual gate button as well as a front panel input for gate/trigger and a back panel input for a sustain pedal.
1003a dual envelope generator (same as 1003, except re-positioned trigger switches and gate buttons)
1004 VCO A Voltage Controlled Oscillator with a range from 0.03Hz to 16kHz, this module can function as a VCO or an LFO. It features separate outputs for each of its five waveforms (sine, triangle, square, sawtooth, and pulse) and 6 CV (control voltage) inputs, as well as a CV input for Pulse Width Modulation.
1004p VCO This module is the same as the 1004, except each waveform has its own attenuation knob for mixing all the waveforms together. There is a separate output to for the mixed waveforms.
1004r VCO This module is the same as the 1004, except each waveform has its own rocker switch to route any or all of the waveforms to an extra mix output.
1004t VCO This module is the same as the 1004r, except it uses toggle switches.
1005 VCA andRing Modulator This module is half Voltage Controlled Amplifier and half Balanced (Ring) Modulator. It is switchable between linear or exponential voltage control, and features 11 inputs, 3 outputs, and illuminated push-buttons.
1006 VCF and VCA The Voltage Controlled Filter (24dB/octave, low-pass, with resonance) and Voltage Controlled Amplifier (switchable between linear and exponential) in one module
1012 Convenience Module This module routes two jack inputs to any of the upper ten lines of the lower matrix. (Remember, most of the patching for this instrument is done from these matrix sliders).
1016 dual noise generators This module features two random voltage generators outputting white or pink noise and two slow sample-and-hold circuits, four outputs in all.
1023 dual VCO Both oscillators feature the same waveforms as 1004 with a switch for high and low frequency ranges. There are a total of 10 control inputs and 2 audio outputs.
1026 Preset Voltage module This module contains eight manually or sequencer-driven gated control-voltages, each with two knobs sending control voltages to separate outputs. It can be connected, via the rear panel, to module 1027 Sequencer or module 1050 Mix-Sequencer.
1027 Sequencer This is a 10X3 sequencer with 14 outputs (including 10 separate position/step gates), 6 inputs, buttons for step and reset, and a knobs for pulse repetition/width, which controls the silence between the steps.
1033 Dual Delayed-Trigger Envelope Generator This module is the same as the 1003 ADSR module except it has two more knobs to control gate delay.
1036 Sample-and-Hold / random voltage
1045 Voice Module This all-in-one module contains a VCO, VCF, VCA, and two ADSR envelope generators, as well as 16 inputs, and four outputs. (Note: Most modules feature a spelling mistake “Resanance” instead of “Resonance”.)
1046 quad envelope generator This module is basically a 1003 and a 1033 combined into one module.
1047 Multimode Filter / Resonator This module features 15 inputs, 4 outputs and an overload warning light.
1050 Mix-Sequencer This module features two 4X1 mixers with illuminated on/off buttons.
3001 Keyboard This keyboard features a 5-octave, 61-note (C-C) keyboard with the bottom two octaves (C-B) reverse colored to show the keyboard split. The top half of the keyboard is duophonic. There are separate CV (1v/octave), gate, and trigger outputs for each side of the split, as well as separate panels on either side of the keyboard with controls for portamento, tuning, and pitch interval.
? Dual-Manual Keyboard Two 3001s, one on top of the other, with the bottom octave (C-B) or two octaves (C-B) of the top keyboard reverse colored to show the split.

from ‘The A-Z of Analogue Synthesizers’, by Peter Forrest, published by Susurreal Publishing, Devon, England, copyright 1994 Peter Forrest


ARP 2600

ARP 2600

The ARP 2600 (1971)

Stevie Wonder endorses the ARP 2600

Stevie Wonder endorses the ARP 2600

The 2600 similar to the EMS’s VCS3 was a portable, semi-modular analog subtractive synthesiser with built in modules and, again similar to the VCS3 was designed to target the educational market; schools, universities and so-on. The inbuilt modules could be patched using a combination of patch cables or by using sliders to control internally hard wired connections:

“ARP 2600 The ultimate professional-quality portable synthesizer Equally at home in the electronic music studio or on stage, the ARP 2600 provides the incredible new sounds in today’s leading rock bands The 2600 is also owned by many of the most prestigious universities and music schools in the world Powerful. dependable, and easy to play. the 2600 can be played without patchcords or modified with patch cords. This arrangement provides maximum speed and convenience for live performance applications, as well as total programming flexibility for teaching, research composition and recording. An pre-wired patch connection(s) can be overridden by simply inserting a patchcord into the appropriate jack on the front panel.

The ARP 2600 is easily expanded and can be used with the ARP 2500 series.Renowned for its electronic superiority, the oscillators and filters in the 2600 are the most stable and accurate available anywhere Accompanied by the comprehensive, fully illustrated owner s manual, the ARP 2600 is recognized as the finest, most complete portable synthesizer made today

FUNCTIONS: 3 Voltage Controlled Oscillators 03 Hz to 20 KHz in two ranges Five waveforms include: variable-width pulse. triangle. sine, square, and sawtooth 1 Voltage Controlled Lowpass filter Variable resonance, DC coupled. Doubles as a low distortion sine oscillator. 1 Voltage Controlled Amplifier Exponential and linear control response characteristics 1 Ring Modulator. AC or DC coupled 2 Envelope Generators. 1 Envelope Follower. 1 Random Noise Generator. Output continuously variable from flat to -6db/octave 1 Electronic Switch, bidirectional 1 Sample & Hold with internal clock. 1 General purpose Mixer and Panpot. 1 Voltage Processor with variable lag. 2 Voltage Processors with inverters 1 Reverberation unit. Twin uncorrelated stereo outputs 2 Built-in monitoring amplifiers and speakers, with standard stereo 8-ohm headphone jack. 1 Microphone Preamp with adjustable gain 1 Four-octave keyboard with variable tuning. variable portamento, variable tone interval, and precision memory circuit. DIMENSIONS: Console 32″ x 18″ x 9x Keyboard 35″ x 10″ x 6″ WEIGHT: 58 Ibs”
ARP 2600 Promotional material 1971

ARP 2800 ‘Odyssey’ 1972

By the mid-1970s ARP had become the dominant synthesiser manufacturer, with a 40 percent share of the $25 million market. This was due to Pearlman’s gift for publicity – the ARP2500 famously starred in the film ‘Close Encounters of the Third Kind’ (1977) as well as product endorsements by famous rock starts; Stevie Wonder, Pete Townsend, Herbie Hanckock and so-on – and the advent of reliable, simpler, commercial instrument designs such as the ARP 2800 ‘Odyssey’ in 1972.

ARP 2800 Odyssey

ARP 2800 Odyssey

The ARP 2800 ‘Odyssey’ 1972-1981

The Odyssey was ARP’s response to Moog’s ‘Minimoog’; a portable, user-friendly, affordable performance synthesiser; essentially a scaled down version of the 2600 with built in keyboard – a form that was to dominate the synthesiser market for the next twenty years or so.

The Odyssey was equipped with two oscillators and was one of the first synthesisers to have duo-phonic capabilities. Unlike the 2600 there were no patch ports, instead all of the modules were hard wired and routable and controllable via sliders and button son the front panel. ‘Modules’ consisted of  two Voltage Controlled Oscillators (switchable between  sawtooth, square, and pulse waveforms)  a resonant low-pass filter, a non-resonant high-pass filter, Ring Modulator, noise generator (pink/white) ADSR and AR envelopes, a triangle and square wave LFO, and a sample-and-hold function. The later Version III model had a variable expression keyboard allowing flattening or sharpening of the pitch and the addition of vibrato depending on key pressure and position.

ARP 2800 Odyssey Mki

ARP 2800 Odyssey MkI

ARP Production model timeline 1969-1981:

  • 1969 – ARP 2002 Almost identical to the ARP 2500, except that the upper switch matrix had 10 buses instead of 20.
  • 1970 – ARP 2500
  • 1970 – ARP Soloist (small, portable, monophonic preset, aftertouch sensitive synthesizer)
  • 1971 – ARP 2600
  • 1972 – ARP Odyssey
  • 1972 – ARP Pro Soloist (small, portable, monophonic preset, aftertouch sensitive synthesizer – updated version of Soloist)
  • 1974 – ARP String Ensemble (polyphonic string voice keyboard manufactured by Solina)
  • 1974 – ARP Explorer (small, portable, monophonic preset, programmable sounds)
  • 1975 – ARP Little Brother (monophonic expander module)
  • 1975 – ARP Omni (polyphonic string synthesiser )
  • 1975 – ARP Axxe (pre-patched single oscillator analog synthesiser)
  • 1975 – ARP String Synthesiser (a combination of the String Ensemble and the Explorer)
  • 1977 – ARP Pro/DGX (small, portable, monophonic preset, aftertouch sensitive synthesiser – updated version of Pro Soloist)
  • 1977 – ARP Omni-2 (polyphonic string synthesiser with rudimentary polyphonic synthesiser functions – updated version of Omni)
  • 1977 – ARP Avatar (an Odyssey module fitted with a guitar pitch controller)
  • 1978 – ARP Quadra (4 microprocessor-controlled analog synthesisers in one)
  • 1979 – ARP Sequencer (analog music sequencer)
  • 1979 – ARP Quartet (polyphonic orchestral synthesiser not manufacted by ARP – just bought in from Siel and rebadged )
  • 1980 – ARP Solus (pre-patched analog monophonic synthesiser)
  • 1981 – ARP Chroma (microprocessor controlled analog polyphonic synthesiser – sold to CBS/Rhodes when ARP closed)

The demise of ARP Instruments was brought about by disorganised management and the decision to invest heavily in a guitar style synthesiser, the SRP Avatar. Although this was an innovative and groundbreaking instrument it failed to sell and ARP were never able to recoup the development costs. ARP filed for bankruptcy in 1981.

ARP Image Gallery





Sources:

http://www.till.com/articles/arp/

‘Analog Days’. T. J PINCH, Frank Trocco. Harvard University Press, 2004

‘Vintage Synthesizers’: Pioneering Designers, Groundbreaking Instruments, Collecting Tips, Mutants of Technology. Mark Vail. March 15th 2000. Backbeat Books

The rise and fall of ARP instruments‘ By Craig R. Waters with Jim Aikin

http://www.arpodyssey.com/

http://www.synthmuseum.com/arp/arpodyssey01.html

The ‘Allen Computer Organ’, Ralph Deutsch – Allen Organ Co, USA, 1971

Allen Computer Organ of 1971

Allen 301-3 Digital Computer organ of 1971

The Allen Computer Organ was one of the first commercial digital instruments, developed by Rockwell International (US military technology company) and built by the Allen Organ Co in 1971. The organ used an early form of digital sampling allowing the user to chose pre-set voices or edit and store sounds using an IBM style punch-card system.

The Rockwell/Allen Computer Organ engineering  team with a prototype model.

The Rockwell/Allen Computer Organ engineering team with a prototype model.

The sound itself was generated from MOS (Metal Oxide Silicon) boards. Each MOS board contained 22 LSI (Large Scale Integration) circuit boards (miniaturised photo-etched silicon boards containing thousands of transistors – based on technology developed by Rockwell International for the NASA space missions of the early 70′s) giving a total of 48,000 transistors; unheard of power for the 1970′s.

Publicity photograph demonstrating  the punch-car reader

Publicity photograph demonstrating the punch-car reader

Allen Organ voice data punch cards

Allen Organ voice data punch cards


Sources

http://www.allenorgan.com/

https://picasaweb.google.com/106647927905455601813/Allen301BDigitalComputerOrgan

http://www.nightbloomingjazzmen.com/Ralph_Deutsch_Digital_Organ.html

http://www.leagle.com/decision/19731480363FSupp1117_11306

The ‘Triadex Muse’ Edward Fredkin & Marvin Minsky, USA, 1971

Triadex Muse

The Triadex Muse

The Triadex Muse was an idiosyncratic sequencer based synthesiser produced in 1972. Designed by Edward Fredkin and the cognitive scientist Marvin Minsky at MIT, the Muse used a deterministic event generator that powered by early digital integrated circuits to generate an audio output. The Muse was not intended as a musical instrument per-se but as a compositional tool (as well as an artificial intelligence experiment), therefore the audio output was left purposefully simple; a monophonic square-wave bleep. The Muse was designed to be connected to a number of other Triadex units  -  an Amplifier and speaker module, a Multi-Muse Cable (used to link multiple Muses together), and a Light Show module; a colour sequencer whose 4 coloured lamps blink in time to the Muse’s signals, using Triadex’s own proprietary standard (therefore they were unable to connect to any other voltage controlled instrument)

Triadex Muse and Amplifier/Speaker module

Triadex Muse and Amplifier/Speaker module

The Muse had no keyboard control but a series of eight slider each with forty set positions. Four of the sliders controlled the interval between notes, and the other four controlled the overall sequence ‘theme’. Visual feedback was provided by a series of displays next to the sliders showing the status of the logic gates. Another set of sliders control the volume from the internal speaker, the tempo of the sequence, and the pitch. Additional switches allow you to start the sequence from the beginning, step through it note-by-note, or substitute a rest point in place of the lowest note.



Sources

 

 

‘GROOVE Systems’, Max Mathews & Richard Moore, USA 1970

Max Mathews with the GROOVE system

Max Mathews with the GROOVE system

In 1967 the composer and musician Richard Moore began a collaboration with Max Mathews at Bell Labs exploring performance and  expression in computer music in a ‘musician-friendly’ environment. The result of this was a digital-analogue hybrid system called GROOVE  (Generated Realtime Operations On Voltage-controlled Equipment) in which a musician played an external analogue synthesiser and a computer monitored and stored the performer’s manipulations of the interface; playing notes, turning knobs and so-on. The objective being to build a real-time musical performance tool by concentrating the computers limited power, using it to store musical parameters of an external device rather than generating the sound itself :

“Computer performance of music was born in 1957 when an IBM 704 in NYC played a 17 second composition on the Music I program which I wrote. The timbres and notes were not inspiring, but the technical breakthrough is still reverberating. Music I led me to Music II through V. A host of others wroteMusic 10, Music 360, Music 15, Csound and Cmix. Many exciting pieces are now performed digitally. TheIBM 704 and its siblings were strictly studio machines–they were far too slow to synthesize music in real-time. Chowning’s FM algorithms and the advent of fast, inexpensive, digital chips made real-time possible, and equally important, made it affordable.”
Max Mathews. ”Horizons in Computer Music,” March 8-9, 1997, Indiana University

Richard Moore with the Groove System

Richard Moore with the Groove System

The system, written in assembler, only ran on the Honeywell DDP224 computer that Bell had acquired specifically for sound research. The addition of a disk storage device meant that it was also possible to create libraries of programming routines so that users could create their own customised logic patterns for automation or composition. GROOVE allowed users to continually adjust and ‘mix’ different actions in real time, review sections or an entire piece and then re-run the composition from stored data. Music by Bach and Bartok were performed with the GROOVE at the first demonstration at a conference on Music and Technology in Stockholm organized by UNESCO  in 1970. Among the participants also several leading figures in electronic music such as Pierre Schaffer and Jean-Claude Risset.

“Starting with the Groove program in 1970, my interests have focused on live performance and what a computer can do to aid a performer. I made a controller, the radio-baton, plus a program, the conductor program, to provide new ways for interpreting and performing traditional scores. In addition to contemporary composers, these proved attractive to soloists as a way of playing orchestral accompaniments. Singers often prefer to play their own accompaniments. Recently I have added improvisational options which make it easy to write compositional algorithms. These can involve precomposed sequences, random functions, and live performance gestures. The algorithms are written in the C language. We have taught a course in this area to Stanford undergraduates for two years. To our happy surprise, the students liked learning and using C. Primarily I believe it gives them a feeling of complete power to command the computer to do anything it is capable of doing.”
Max Mathews. ”Horizons in Computer Music,” March 8-9, 1997, Indiana University

The GROOVE System at the Bell Laboratories circa 1970

The GROOVE System at the Bell Laboratories circa 1970

The GROOVE system consisted of:

  • 14 DAC control lines scanned every 100th/second ( twelve 8-bit and two 12-bit)
  • An ADC coupled to a multiplexer for the conversion of seven voltage signal: four generated by the same knobs and three generated by 3-dimensional movement of a joystick controller;
  • Two speakers for audio sound output;
  • A special keyboard to interface with the knobs to generate On/Off signals
  • A teletype keyboard for data input
  • A CDC-9432 disk storage;
  • A tape recorder for data backup



Antecedents to the GROOVE included similar projects such as PIPER, developed by James Gabura and Gustav Ciamaga at the University of Toronto, and a system proposed but never completed by Lejaren Hiller and James Beauchamp at the University of Illinois . GROOVE was however, the first widely used computer music system that allowed composers and performers the ability to work in real-time. The GROOVE project ended in 1980 due to both the high cost of the system – some $20,000, and also  to advances in affordable computing power that allowed synthesisers and performance systems to work together flawlessly .


Sources

Joel Chadabe, Electric Sound: The Past and Promise of Electronic Music, Prentice Hall, 1997.

F. Richard Moore, Elements of Computer Music, PTR Prentice Hall, 1990.

http://www.vintchip.com/mainframe/DDP-24/DDP24.html