The Stylophone , Brian Jarvis, UK, 1967

Stylophone

The Dübreq Stylophone

The Stylophone was a small novelty electronic instrument created in the UK by Brian Jarvis’s Dübreq Company (originally a film production and recording studio specialising in dubbing and recording based in Leeds – the umlaut was added to give the impression of Germanic quality) between 1967 and 1975. The Stylophone was designed to be as cheap as possible to produce and manufacture based around a design with a single oscillator controlled by a metal plate 20 note keyboard printed directly on to the PCB board played by a hand-held stylus.

Rolf Harris and the Stylophone

Rolf Harris and the Stylophone

The instrument had a ‘unique’ sound; a simple buzzing square wave with no envelope control which could be modulated with vibrato via sine wave LFO. Despite it’s simplicity, and due to a marketing campaign featuring Rolf Harris enthusiastically endorsing the device, the Stylophone caught on; during the six years of it’s manufacture, over three million Stylophones were sold (The original Stylophone was sold mail-order for £8 18″6d each, the equivalent of around £95.00 in today’s money). Although intended as a toy, the Stylophone was picked up by a number of musicians of the period – most famously David Bowie on ‘Space Oddity’ (who apparently hated the instrument, loaned to him by Mark Bolan) and Kraftwerk. The instrument has more recently acquired a kitsch retro-nostlagic value and is used by groups such as Pulp, Manic Street Preachers, Belle and Sebastian, Orbital, Hexstatic and many others.

stylophone 350s

stylophone 350s

Stylophone 350S

The 350Swas the big brother of the original Stylophone launched in 1971. The 350s had a larger 44 note metal plate keyboard which could be switched up and down one octave and two styluses. The instrument also had eight voices – Woodwind, Brass and Strings -  as opposed to the original version’s one voice. The 350s’ sound  could be altered with a basic decay control switch and a unique ‘photo control’ – a phot0-optic cell that the user covers with the left hand to modulate the amount of vibrato, low pass filter cutoff and volume creating a wah-wah like effect. Fewer than 3000 units of the 350s were produced and sold.

In 2003 Dübreq was re-launched by Ben Jarvis, son of the original designer leveraging on the retro-kitsch value of the original instrument. Several updated versions of the Stylophone have been released.




Images of the Stylophone

_______________________________________________

Sources:

http://andymurkin.wordpress.com/category/modification/stylophones/

http://stylophonica.com/
http://www.vice.com/en_uk/read/screw-rolf-harris-watch-this-trailer-and-then-the-movie

EMS Synthesisers, Peter Zinovieff, Tristram Cary, David Cockerell United Kingdom, 1969

EMS (Electronic Music Studios) was founded in 1965 by Peter Zinovieff, the son of an aristocrat Russian émigré with a passion for electronic music who set up the studio in the back garden of his home in Putney, London. The EMS studio was the hub of activity for electronic music in the UK during the late sixties and seventies with composers such as Harrison Birtwistle, Tristram Cary, Karlheinz Stockhausen and Hans Werner Henze as well as the commercial electronic production group ‘Unit Delta Plus  (Zinovieff, Delia Derbyshire and Brian Hodgson).

Front panel of the DEC PDP8i

Front panel of the DEC PDP8i

Zinovieff , with David Cockerell and Peter Grogono developed a software program called MUSYS (which evolved into the current MOUSE audio synthesis programming language) to run on two DEC PDP8 mini-computers allowing the voltage control of multiple analogue synthesis parameters via a digital punch-paper control.  In the mid 1960′s access outside the academic or military establishment to, not one but two, 12-bit computers with 1K memory and a video monitor for purely musical use was completely unheard of:

” I was lucky in those days to have a rich wife and so we sold her tiarra and we swapped it for a computer. And this was the first computer in the world in a private house.” – Peter Zinovieff

The specific focus of EMS was to work with digital audio analysis and manipulation or as Zinovieff puts it “ To be able to analyse a sound; put it into sensible musical form on a computer; to be able to manipulate that form and re-create it in a musical way” (Zinovieff 2007). Digital signal processing was way beyond the capabilities of the DEC PDP8′s; instead they were used to control a bank of 64 oscillators (actually resonant filters that could be used as sine wave generators) modified for digital control. MUSYS was therefore a hybrid digital-analogue performance controller similar to Max Mathew’s GROOVE System (1970) and  Gabura & Ciamaga’s PIPER system (1965).

Peter Zinovieff at the controls of the PDP8 Computer, EMS studio London

Peter Zinovieff at the controls of the PDP8 Computer, EMS studio London

ems_studio_diagram

EMS studio diagram (from Mark Vail’s ‘ Vintage Synthesizers’)

Even for the wealthy Peter Zinovieff, running EMS privately was phenomenally expensive and he soon found himself running into financial difficulties. The VCS range of synthesisers was launched In 1969 after Zinovieff received little interest when he offered to donate the Studio to the nation (in a letter to ‘The Times’ newspaper). It was decided that the only way EMS could be saved was to create a commercial, miniaturised version of the studio as a modular, affordable synthesiser for the education market. The first version of the synthesiser designed by David Cockerell, was an early prototype called the  Voltage Controlled Studio 1; a two oscillator instrument built into a wooden rack unit – built for the Australian composer Don Banks for £50 after a lengthy pub conversation:

“We made one little box for the Australian composer Don Banks, which we called the VCS1…and we made two of those…it was a thing the size of a shoebox with lots of knobs, oscillators, filter, not voltage controlled. Maybe a ring modulator, and envelope modulator” David Cockerell 2002

vcs-3_0001 The VCS1 was soon followed by a more commercially viable design; The Voltage Controlled Studio 3 (VCS3), with circuitry by David Cockerell, case design by Tistram Cary and with input from Zimovieff . This device was designed as a small, modular, portable but powerful and versatile electronic music studio – rather than electronic instrument – and as such initially came without a standard keyboard attached. The price of the instrument was kept as low as possible – about £330 (1971) – by using cheap army surplus electronic components:

“A lot of the design was dictated by really silly things like what surplus stuff I could buy in Lisle Street [Army-surplus junk shops in Lisle Street, Soho,London]…For instance, those slow motion dials for the oscillator, that was bought on Lisle street, in fact nearly all the components were bought on Lisle street…being an impoverished amateur, I was always conscious of making things cheap. I saw the way Moog did it [referring to Moog's ladder filter] but I adapted that and changed that…he had a ladder based on ground-base transistors and I changed it to using simple diodes…to make it cheaper. transistors were twenty pence and diodes were tuppence!” David Cockerell from ‘Analog Days’

Despite this low budget approach, the success of the VCS3 was due to it’s portability and flexibility. This was the first affordable modular synthesiser that could easily be carried around and used live as a performance instrument. As well as an electronic instrument in it’s own right, the VCS3 could also be used as an effects generator and a signal processor, allowing musicians to manipulate external sounds such as guitars and voice.

VCS3 with DK1 keyboard

VCS3 with DK1 keyboard

The VCS3 was equipped with two audio oscillators of varying frequency, producing sine and sawtooth and square waveforms which could be coloured and shaped by filters, a ring modulator, a low frequency oscillator, a noise generator,  a spring reverb and envelope generators. The device could be controlled by two unique components whose design was dictated by what could be found in Lisle street junk shops; a large two dimensional joystick (from a remote control aircraft kit) and a 16 by 16 pin board allowing the user to patch all the modules without the clutter of patch cables.

The iconic 16 X 16 pin-patch panel of the VCS3

The iconic 16 X 16 pin-patch panel of the VCS3. The 2700 ohm resistors soldered inside the pin vary in tolerance 5% variance and later 1%; the pins have different colours: the ‘red’ pins have 1% tolerance and the ‘white’ have 5% while the ‘green’ pins are attenuating pins having a resistance of 68,000 ohms giving differing results when constructing a patch.

The original design intended as a music box for electronic music composition – in the same vein as Buchla’s Electronic Music Box – was quickly modified with the addition of a standard keyboard that allowed tempered pitch control over the monophonic VCS3. This brought the VCS3 to the attention of rock and pop musicians who either couldn’t afford the huge modular Moog systems (the VCS3 appeared a year before the Minimoog was launched in the USA) or couldn’t find Moog, ARP or Buchla instruments on the British market. Despite it’s reputation as being hopeless as a melodic instrument due to it’s oscillators inherent instability the VCS3 was enthusiastically championed by many british rock acts of the era; Pink Floyd, Brian Eno (who made the external audio processing ability of the instruments part of his signature sound in the early 70′s), Robert Fripp, Hawkwind (the eponymous ‘Silver Machine‘), The Who, Gong and Jean Michel Jarre amongst many others. The VCS3 was used as the basis for a number of other instrument designs by EMS including an ultra-portable A/AK/AKS (1972) ; a VCS3 housed in a plastic carrying case with a built-in analogue sequencer, the Synthi HiFli guitar synthesiser (1973), EMS Spectron Video Synthesiser, Synthi E (a cut-down VCS3 for educational purposes) and AMS Polysynthi as well as several sequencer and vocoder units and the large modular EMS Synthi 100 (1971).

Despite initial success – at one point Robert Moog offered a struggling Moog Music to EMS for $100,000 – The EMS company succumbed to competition from large established international instrument manufacturers who brought out cheaper, more commercial, stable and simpler electronic instruments; the trend in synthesisers has moved away from modular user-patched instruments to simpler, preset performance keyboards. EMS finally closed in 1979 after a long period of decline. The EMS name was sold to Datanomics in Dorset UK and more recently a previous employee Robin Wood, acquired the rights to the EMS name in 1997 and restarted small scale production of the EMS range to the original specifications.

Peter Zinovieff.  Currently working as a librettist and composer of electronic music in Scotland.

David Cockerell, chief designer of the VCS and Synthi range of instruments left EMS in 1972 to join Electro-Harmonix and designed most of their effect pedals. He went to IRCAM, Paris in 1976 for six months, and then returned to Electro-Harmonix . Cockerell  designed the entire Akai sampler range to date, some in collaboration with Chris Huggett (the Wasp & OSCar designer) and Tim Orr.

Tristram Cary , Director of EMS until 1973. Left to become Professor of Electronic Music at the Royal College of Music and later Professor of Music at the University of Adelade. Now retired.

Peter Grogono Main software designer of MUSYS. Left EMS in 1973 but continued working on the MUSYS programming language and further developed it into the Mouse language. Currently Professor at the Department of Computer Science, Concordia University, Canada.

The Synthi 100 at IPEM Studios Netherlands.

The Synthi 100 at IPEM Studios Netherlands.

The EMS Synthi 100

The EMS Synthi 100 was a large and very expensive (£6,500 in 1971)  modular system, fewer than forty units were built and sold. The Synthi 100 was essentially  3 VCS3′s combined; delivering a total of 12 oscillators, two duophonic keyboards giving four note ‘polyphony’ plus a 3 track 256 step digital sequencer. The instrument also came with optional modules including a Vocoder 500 and an interface to connect to a visual interface via a PDP8 computer known as the ‘Computer Synthi’.  

Images of EMS Synthesisers


Documents:

VCS3 Manual (pdf)


Sources:

http://www.till.com/articles/arp/ ‘Analog Days’. T. J PINCH, Frank Trocco. Harvard University Press, 2004

‘Vintage Synthesizers’: Pioneering Designers, Groundbreaking Instruments, Collecting Tips, Mutants of Technology. Mark Vail. March 15th 2000. Backbeat Books

http://www.redbullmusicacademy.com/lectures/dr-peter-zinovieff-the-original-tectonic-sounds?template=RBMA_Lecture%2Ftranscript

http://users.encs.concordia.ca/~grogono

http://www.emssynthesisers.co.uk/

https://jasperpye.wordpress.com/category/synths

Peter Forrest, The A-Z of Analogue Synthesisers Part One A-M, Oct 1998.

the ‘Maestrovox’, Victor Harold Ward, United Kingdom, 1952

Maestrovox

Maestrovox Consort Model

The Maestrovox was a monophonic portable vacuum tube organ built by Maestrovox Electronic Organs in Middlesex, UK. The instrument was one of the many designs similar to the Clavioline, Tuttivox and Univox and intended as a piano attachment instrument for dance bands and light orchestras of the day. The Maestrovox was produced from 1952 onwards and came in a number of models, the Consort, Consort De-Luxe, Coronation and a later version that mechanically triggered notes from a Piano keyboard, the Orchestrain.

 

Maestrovox Consort

Maestrovox Consort

 

Maestrovox – By Charles Hayward of ‘This Heat’

I used a Maestrovox keyboard with This Heat, set up just to the left of my drum kit (alongside a Bontempi electronic organ with about 3 sounds). It can be heard throughout This Heat’s recordings and was used onstage for most of the group’s gigs.

The Maestrovox was a fascinating instrument, it was advertised second-hand in the Evening News small-ads, maybe 1966 or 68, I didn’t really know what it was that I was going to see, just that I wanted to use an electronic keyboard in conjunction with domestic tape machines and this was going fairly cheap, £15 or so. I persuaded my brother to go half although in truth he never really used it. When we got it back home the unusual qualities of the instrument slowly became clear.

Firstly it was monophonic, with priority given to the highest note played; this was heavenly, you could ‘yodel’ between notes, sometimes using the lower note as a drone, sometimes playing contrary lines in 2 hands with only 1 note being heard at any time, sort of ‘strobing’ between 2 places. The keys were highly sprung, so that on the black notes, if played very quickly, the springs would activate even faster and the rate of change between the higher played note and a sustained lower sound would be very distinctive. This sound was used at the beginning and end of the 1st This Heat album and also played very quietly for about 20 minutes immediately before a gig, a bit like a distant alarm.

Tuning was an unsolvable problem that became a fantastic strength and the predominant reason for using the keyboard with the group. There were a couple of little tuning knobs on the console of filters that were changed with a screwdriver. No matter how I tried I could not find the place where the keyboard was in tune with itself, the nearest I could get was the low D to have its octave on the E 9 notes higher, in other words a 14 note octave (instead of the usual 12). Consequently every note was slightly flat or sharp. This meant that melodies had to be re-learnt when using the Maestrovox so that the tuning would bend in and out with other ‘orthodox’ tuned instruments. When played at the ‘back’ of the group’s sound the result would be to inexplicably ‘widen’ the sound.

The 4-step vibrato didn’t seem to work properly and had the effect of flattening the tuning by very small amounts, a little more than a quarter tone at the fullest extent. A series of filters changed the sound, 5 or 6 little buttons that could be engaged in different permutations. A 2- page pamphlet had a list of filter combinations that imitated ‘real’ instruments (always a doomed idea). I seem to remember that 13 was bassoon in the lower register (a particular favourite) and oboe in the higher register. These sound filters also effected the tuning. Another row of 3 buttons changed the attack parameters, without a little ‘slope’ it was kind of ‘clicky’, like the sound was being switched on.

The keyboard was about the size of a PSS Yamaha (which is sometimes confusingly described as a ’midi’ keyboard), and had a range of perhaps 3 octaves. The Maestrovox was designed to sit under a piano keyboard as a sort of addition to the acoustic instrument, although the tuning must have made any orthodox use hilarious. There was a sort of tripod that was supposed to hold it up against the underneath of the piano keyboard, this looked very shaky and unreliable, so my dad knocked up a stand, something like a shrunken Hammond. Valves glowed inside the keyboard which was connected via a multi-pin plug and lead to an amplifier that also served as a box for transportation. Both mains electricity and sound signal were conveyed by this lead. To boost the signal I connected a pair of crocodile clips to the speaker and this was then plugged in to a larger amplifier. I’m not sure if a connection socket was fixed for ease and reliability when This Heat started touring more regularly. The volume was controlled by a knee-operated lever (I remember harmoniums used this method too), I found a way of holding this in place and used a foot swell pedal instead.

It blew up sometime before This Heat began and it was quite a problem getting replacement valves. During the recording of ‘Cenotaph’ on the Deceit album it blew up again, in fact the track starts out with 2 tracks of Maestrovox and by the end there’s only 1 because it stopped working during the overdub. Getting replacement parts was time consuming, perhaps impossible, and then other things meant that a lot of equipment held in our rehearsal studio Cold Storage got lost, including the Maestrovox. By this time This Heat had split and it’s sound was so much part of that group that I was both sad and pleased to see it go.

Charles Hayward


Sources

http://www.debbiecurtis.co.uk/id99.html

The ‘Singing Arc’ William Duddell, UK, 1899

The singing arc

The singing arc

Before Thomas Alva Edison invented the electric light bulb in the United States, electric street lighting was in widespread use throughout Europe. The predecessor of the filament light bulb was the Carbon Arc Lamp which generated light by creating a spark between two carbon nodes. The problem with this method of lighting, apart from the dullness of the light and inefficient use of electricity was a constant humming noise from the electric arc. The British physicist and electrical engineer William Duddell was appointed to solve the problem in London in 1899. During his experiments Duddell found that by varying the voltage supplied to the lamps he could create controllable audible frequencies from a resonant circuit caused by the rate of pulsation of exposed electrical arcs.

Wave forms photographically recorded by Duddell's 'Oscillograph'

Wave forms photographically recorded by Duddell’s ‘Oscillograph’

(Technically note: a current arc between to electrodes, shunted by a circuit containing a capacitance and inductance would establish an oscillating circuit. The value of the of the capacitance and inductance determines the frequency of oscillation. An arc follows a characteristic, which is the inverse of Ohm’s law in that when the current of the arc is increased, the voltage across the electrodes decreases. This characteristic is often called negative resistance. Placing a series LC circuit across the terminals of an arc will initially cause the capacitor to charge, diverting some of the current away from the arc. Given the aforementioned arc characteristics, the potential difference between the arc electrodes will increase, putting the capacitor at an even higher voltage. Once the capacitor reaches full charge the arc current will reverse to discharge the capacitor back into the arc. As the current into the arc increases, the potential difference will fall and the voltage across the capacitor will also fall to a point, which it will begin to charge again. If the circuit resistance is small enough, this process will continue as an oscillation. Duddell found that it was necessary to use a minimum of 1 microfarad of capacitance to obtain oscillations of considerable energy. With this large capacitance, it was not possible to reach high enough frequencies for transmission of Radio-telegraphy.).

Duddell Moving Coil Oscilliograph

Duddell’s Moving Coil Oscilliograph

This phenomena had already previously been recorded in 1898 by a Dr. Simon (Frankfurt, Germany). Dr. Simon had noticed that the electric arc could be made to “sing” by means of modulating the voltage to an electric arc supply. Dr. Simon showed that the electric arc made a effective loudspeaker which he demonstrated in public, Duddell may have been aware of these experiments. Dr. Simon’s experiments also showed that the modulated arc produced not only sound but a modulated light beam by means of which the German Navy managed to make telephone calls between ships using a modulated arc searchlight and a photosensitive selenium cell.

A carbon arc street lamp of the type used in Victorian Britain

A carbon arc street lamp of the type used in Victorian Britain

By attaching a keyboard to the arc lamps he created one of the first electronic instruments and the first electronic instrument that was audible without using the yet to be invented amplifier, loudspeaker or telephone system as an amplifier and speaker. When Duddell exhibited his invention to the London institution of Electrical Engineers it was noticed that arc lamps on the same circuit in other buildings also played music from Duddell’s machine this generated speculation that music delivered over the lighting network could be created. Duddell didn’t capitalise on his discovery and didn’t even file a patent for his instrument. Duddell toured Britain with his invention which unfortunately never became more than a novelty. It was later recognised that if an antenna was attached to the singing arc and made to ‘sing’ at radio frequencies rather than audio it could be used a continuous radio wave transmitter. The carbon arc lamp’s audio capabilities was also used by Thadeus Cahill during his public demonstrations of his Telharmonium ten years later

William Du Bois Duddell

William Du Bois Duddell

Biographical Information: William du Bois Duddell. UK b 1872

William Duddell an electrical engineer in Victorian England was famous for developing a number of electronic instruments notably the “moving coil oscillograph” an early oscillator type device for the photographic monitoring of audio frequency waveforms. Other inventions of Duddell’s included the thermo-ammeter, thermo-galvanometer (an instrument for measuring minute currents and potential differences later used for measuring antenna currents and still used in modified form today)and a magnetic standard, which was used for the calibration of ballistic galvanometers.


Sources:

‘Oramics’ Daphne Oram. UK, 1959.

Daphne Oram working at the Oramics machine

Daphne Oram working at the Oramics machine at Oramics Studios for Electronic Composition in Tower Folly, Fairseat, Wrotham, Kent

The technique of Oramics was developed by the composer and electronic engineer Daphne Oram in the UK during the early 1960s. It consisted of drawing onto a set of ten sprocketed synchronised strips of 35mm film which covered a series of photo-electric cells that in turn generated an electrical charge to control the frequency, timbre, amplitude and duration of a sound. This technique was similar to the work of Yevgeny Sholpo’s “Variophone” some years earlier in Leningrad and in some ways to the punch-roll system of the RCA Synthesiser. The output from the instrument was only monophonic relying on multi-track tape recording to build up polyphonic textures.

Oram worked at the BBC from 1942 to 1959 where she established the Radiophonic Workshop with Desmond Briscoe. She resigned from the BBC in 1959 to set up her own studio the ‘Oramics Studios for Electronic Composition’ in a converted oast-house in Wrotham, Kent. With the help of the engineer Graham Wrench, she built “with an extremely tight budget and a lot of inverted, lateral thinking” the photo-electrical equipment she christened ‘Oramics’ which she used to compose and record commercial music for not only radio and television but also theatre and short commercial films.

“There was an octagonal room,” remembers Graham, “where she’d set up her studio, but on a board covering a billiard table in an adjoining reception room was displayed the electronics for Oramics. There wasn’t very much of it! She had an oscilloscope and an oscillator that were both unusable, and a few other bits and pieces — some old GPO relays, I remember. Daphne didn’t seem to be very technical, but she explained that she wanted to build a new system for making electronic music: one that allowed the musician to become much more involved in the production of the sound. She knew about optical recording, as used for film projectors, and she wanted to be able to control her system by drawing directly onto strips of film. Daphne admitted the project had been started some years before, but no progress had been made in the last 12 months. I said I knew how to make it work, so she took me on. I left my job with the Medical Research Council and started as soon as I could.”

“Graham Wrench: The Story Of Daphne Oram’s Optical Synthesizer’ Sound on Sound magazine Steve Marshall february 2009

Oramics machine

Oramics machine

The attraction of this technique was a direct relation of a graphic image to the audio signal and even though the system was monophonic, the flexibility of control over the nuances of sound production was unmatched in all but the most sophisticated analogue voltage controlled synthesisers. Daphne Oram continued to use the process throughout the sixties producing work for film and theatre including; “Rockets in Ursa Major”(1962), “Hamlet”(1963) and “Purple Dust” (1964).



Devizes, Wilts, 1925; Maidstone, Kent, 2003

Daphne Oram. Born Devizes, Wilts, 1925;Died Maidstone, Kent, 2003


Sources

http://daphneoram.org

http://www.sara.uea.ac.uk/?artist&id=749

Jo Hutton ‘Radiophonic Ladies’

http://www.soundonsound.com/sos/feb09/articles/oramics.htm

The ‘Mellotron’ and ‘Novatron’ . Leslie Bradley, UK,1963

The Mellotron

The Mellotron late model 2007 M4000

Mellotrons and Novatrons were produced in England by Streetly Electronics, Birmingham, from the early ’60s until the early ’80 by Leslie Bradley and his brothers Frank and Norman. The original Mellotron was designed as an expensive domestic novelty instrument and were based, knowingly or not on the Chamberlin a very similar tape-sample based instrument from the USA. The Mellotron was an analogue precursor of the modern digital sampler using pre-recorded strips of magnetic tape rather than digital samples. Under each key was a strip of magnetic tape with a recorded sound that corresponded to the pitch of the key (The Mark II had two keyboards of 35 notes each making a total of 1260 seperate recordings). The instrument played the sound when the key is pressed and returns the tape head to the beginning of the tape when the key is released. This design enables the recorded sound to keep the individual characteristics of a sustained note (rather than a repeated loop) but had a limited duration per note, usually eight seconds. The keyboard was fully polyphonic and could reproduce a wide range of wind and string instruments as well as percussion.

“Now, with the fabulous Mellotron, anyone with the slightest ear for music can command his own orchestra – simply by using two fingers and a thumb – producing a wealth of orchestral sounds from a single keyboard…I regard the Mellotron as the “greatest” in home entertainment since television.”
Eric Robinson, c1967
Internal tape mechanism of the Mellotron

Internal tape mechanism of a later version Mellotron, the M4000

Most Mellotrons had 3 track 3/8″ tapes, the different tracks being selectable by moving the tape heads across the tape strips from the front panel. This feature allowed the sound to be easily changed while playing and made it possible to set the heads in between tracks to blend the sounds. Despite attempting to faithfully recreate the sound of an instrument the Mellotron had a distinct sound of its own that became fashionable amongst rock musicians during the 1960′s and 1970′s. The Novatron was a later model of the Mellotron re-named after the original company liquidised after a legal dispute in the USA in 1977. Melltrons became obsolete in the 1980′s with the popularisation of synthesisers and later digital samplers and the Novatron/Mellotron company folded in 1986. Despite this, the nostalgia for the instrument continued and Bradley’s sons restarted the Mellotron company around 2000 with the re-launch of a digitally enhanced  Mk4000.

mellotron_ad_19752



Sources: