‘Graphic 1′ William H. Ninke, Carl Christensen, Henry S. McDonald and Max Mathews. USA, 1965


‘Graphic 1′  was an hybrid hardware-software graphic input system for digital synthesis that allowed note values to be written on a CRT computer monitor – although very basic by current standards, ‘Graphic 1′ was the precursor to most computer based graphic composition environments such as Cubase, Logic Pro, Ableton Live and so-on.

The IBM704b at Bell Labs used with the Graphics 1 system

The IBM704b at Bell Labs used with the Graphics 1 system

‘Graphic 1′ was developed by William Ninke (plus  Carl Christensen and Henry S. McDonald) at Bell labs for use by Max Mathews as a graphical front-end for MUSIC IV synthesis software to circumvent the lengthy and tedious process of adding numeric note values to the MUSIC program.

” The Graphic 1 allows a person to insert pictures and graphs directly into a computer memory by the very act of drawing these objects…Moreover the power of the computer is available to modify, erase, duplicate  and remember these drawings”
Max Mathews  quoted from ‘Electronic and Experimental Music: Technology, Music, and Culture’ by Thom Holmes

Lawrence Rosller of Bell labs with Max Mathews in front of the Graphics 1 system c 1967

Lawrence Rosller of Bell labs with Max Mathews in front of the Graphics 1 system c 1967

Graphic 2/ GRIN 2 was later developed in 1976 as a commercial design package based on a faster PDP2 computer and was sold by Bell and DEC as a computer-aided design system for creating circuit designs and logic schematic drawings.

Audio recordings of the Graphic I/MUSIC IV system

Graphic I Audio file 1

Graphic I Audio file 2

Graphic I Audio file 3

Graphic I Audio file 4


Sources:

‘Interview with Max Mathews’ C. Roads and Max Mathews. Computer Music Journal, Vol. 4, No. 4 (Winter, 1980), pp. 15-22. The MIT Press

Electronic and Experimental Music: Technology, Music, and Culture. Thom Holmes

http://www.musicainformatica.it/

http://cm.bell-labs.com/cm/cs/cstr/99.html

‘The Oramics Machine: From vision to reality’. PETER MANNING. Department of Music, Durham University, Palace Green, Durham, DH1 3RL, UK

M. V. Mathews and L. Rosler’ Perspectives of New Music’  Vol. 6, No. 2 (Spring – Summer, 1968), pp. 92-118

W. H. Ninke, “GRAPHIC I: A Remote Graphical Display Console System,” Proceedings of the Fall Joint Computer Conference of the American Federation of Information Processing Societies 27 (1965), Part I, pp. 839-846.

‘Encyclopedia of Computer Science and Technology: Volume 3 – Ballistics …’ Jack Belzer, Albert G. Holzman, Allen Kent

The ‘Tubon’ Joh Mustad AB, Sweden, 1966

The Tubon

The Joh Mustad ‘Tubon’

The Tubon was an early ancestor of the  guitar-style electronic instrument family developed throughout the 1970s and 80s to allow the keyboard to become a front-of-stage performance device alongside guitars and vocalists. The Tubon was a tubular battery-powered, monophonic keyboard instrument that was played standing up supported around the neck with a strap, guitar-style, allowing the performer freedom to move around the stage. The Tubon was primarily designed as a bass instrument and had six preset sounds: Tuba, Contrabass, Electric Bass, saxophone, electric bass, woodwind and was commonly used by pop and folk bands in Sweden during the 1970s.

Paul McCartney's Tubon

Paul McCartney’s Tubon

Paul McCartney's Tubon backstage at a gig in germany

Paul McCartney’s Tubon backstage at a gig in germany

The instrument was manufactured by in 1966 by the Swedish manufacturer of electronic tube organs, Joh Mustad AB, in Gothenburg, Sweden and also sold under license in the UK as the ‘Livingstone’. Very few of the instruments were sold outside of Sweden but one was purchased by Paul McCartney ( the original score for ‘Strawberry Fields Forever’ includes a Tubon intro which was replaced by a Chamberlin on the final recording) and by Ralf Hütter of Kraftwerk in the early 1970s.

Score for

Score for ‘Strawberry Fields Forever’ introduction

Images of the ‘Tubon’:



Sources

http://tubonism.blogspot.co.uk/

MUSYS. Peter Grogono, United Kingdom, 1969

EMS was the London electronic music studio founded and run by Peter Zinovieff in 1965 to research and produce experimental electronic music. The studio was based around two DEC PDP8 minicomputers, purportedly the first privately owned computers in the world.

One of the DEC PDP8 mini-computers at EMS

One of the DEC PDP8 mini-computers at EMS

Digital signal processing was way beyond the capabilities of the 600,000 instructions-per-second, 12k RAM, DEC PDP8s; instead, Peter Grogono was tasked with developing a new musical composition and ‘sequencing’ language called MUSYS. MUSYS was designed to be an easy to use, ‘composer friendly’ and efficient (i.e. it could run within the limitations of the PDP8 and save all the data files to disk – rather than paper tape) programming language to make electronic music.  MUSYS, written in assembly language, allowed the PDP8s to control a bank of 64 filters which could be used either as resonant oscillators to output sine waves, or in reverse, to read and store frequency data from a sound source. This meant that MUSYS was a type of low resolution frequency sampler; it could ‘sample’ audio frequency data at 20 samples per second and then reproduce that sampled data back in ‘oscillator mode’. MUSYS was therefore a hybrid digital-analogue performance controller similar to Max Mathew’s GROOVE System (1970) and  Gabura & Ciamaga’s PIPER system (1965) and a precursor to more modern MIDI software applications.

“It all started in 1969, when I was working at Electronic Music Studios (EMS) in Putney, S.W. London, UK. I was asked to design a programming language with two constraints. The first constraint was that the language should be intelligible to the musicians who would use it for composing electronic music. The second constraint was that it had to run on a DEC PDP8/L with 4K 12-bit words of memory.”

The two PDP8′s were named after Zinovieff’s children Sofka (an older a PDP8/S) and Leo (a newer, faster a PDP8/L). Sofka was used as a sequencer that passed the time-events to the audio hardware (the 64 filter-oscillators,  six amplifiers, three digital/analog converters, three “integrators” (devices that generated voltages that varied linearly with time), twelve audio switches, six DC switches, and a 4-track Ampex tape-deck). Leo was used to compute the ‘score’ and pass on the data when requested by Sofka every millisecond or so;

“These devices could be controlled by a low-bandwidth data stream. For example, a single note could be specified by: pitch, waveform, amplitude, filtering, attack rate, sustain rate, and decay time. Some of these parameters, such as filtering, would often be constant during a musical phrase, and would be transmitted only once. Some notes might require more parameters, to specify a more complicated envelope, for instance. But, for most purposes, a hundred or so events per second, with a time precision of about 1 msec, is usually sufficient. (These requirements are somewhat similar to the MIDI interface which, of course, did not exist in 1970.)”

partita-for-unattended-computer-3

partita-for-unattended-computer-1

Previous to the development of MUSYS, the EMS PDP8s were used for the first ever unaccompanied performance of live computer music ‘Partita for Unattended Computer’ at Queen Elizabeth Hall, London, 1967. Notable compositions based on the MUSYS sytem include: ‘Medusa’ Harrison Birtwistle 1970, ‘Poems of Wallace Stevens’  Justin Connolly. 1970, ‘Tesserae 4′  Justin Connolly 1971, ‘Chronometer’  Harrison Birtwistle 1972, ‘Dreamtime’ David Rowland 1972, ‘Violin Concerto’  Hans Werner Henze 1972.

Audio Examples

Demonstrating the digital manipulation of a voice with the frequency sampler:

In the Beginning‘ PeterGrogono with Stan Van Der Beek 1972. “In 1972, Stan Van Der Beek visited EMS. Peter Zinovieff was away and, after listening to some of the things we could do, Stan left with brief instructions for a 15 minute piece that would “suggest the sounds of creation and end with the words ‘in the beginning was the word’”. All of the sounds in this piece are derived from these six words, heard at the end, manipulated by the EMS computer-controlled filter bank.”

Datafield‘ Peter Grogono 1970

Chimebars  Peter Grogono 1968

 MUSYS code examples

A composition consisting of a single note might look like this:

      #NOTE 56, 12, 15;
      $

The note has pitch 56 ( from an eight-octave chromatic scale with notes numbered from 0 to 63), loudness 12 (on a logarithmic scale from 0 to 15), and duration 15/100 = 0.15 seconds. The loudness value also determines the envelope of the note.

An example of a MUSYS  program that would play fifty random tone rows:

      50 (N = 0 X = 0
      1  M=12^  K=1  M-1 [ M (K = K*2) ]
         X & K[G1]
         X = X+K  N = N+1  #NOTE M, 15^, 10^>3;
         12 - N[G1]
      $

MUSYS evolved in 1978 into the MOUSE programming language; a small, efficient stack based interpreter.


Sources:

http://users.encs.concordia.ca/~grogono/Bio/ems.html

Peter Grogono.’MUSYS: Software for an Electronic Music Studio. Software – Practice and Experience’, vol. 3, pages 369-383, 1973.

http://www.retroprogramming.com/2012/08/mouse-language-for-microcomputers-by.html

EMS Synthesisers, Peter Zinovieff, Tristram Cary, David Cockerell United Kingdom, 1969

EMS (Electronic Music Studios) was founded in 1965 by Peter Zinovieff, the son of an aristocrat Russian émigré with a passion for electronic music who set up the studio in the back garden of his home in Putney, London. The EMS studio was the hub of activity for electronic music in the UK during the late sixties and seventies with composers such as Harrison Birtwistle, Tristram Cary, Karlheinz Stockhausen and Hans Werner Henze as well as the commercial electronic production group ‘Unit Delta Plus  (Zinovieff, Delia Derbyshire and Brian Hodgson).

Front panel of the DEC PDP8i

Front panel of the DEC PDP8i

Zinovieff , with David Cockerell and Peter Grogono developed a software program called MUSYS (which evolved into the current MOUSE audio synthesis programming language) to run on two DEC PDP8 mini-computers allowing the voltage control of multiple analogue synthesis parameters via a digital punch-paper control.  In the mid 1960′s access outside the academic or military establishment to, not one but two, 12-bit computers with 1K memory and a video monitor for purely musical use was completely unheard of:

” I was lucky in those days to have a rich wife and so we sold her tiarra and we swapped it for a computer. And this was the first computer in the world in a private house.” – Peter Zinovieff

The specific focus of EMS was to work with digital audio analysis and manipulation or as Zinovieff puts it “ To be able to analyse a sound; put it into sensible musical form on a computer; to be able to manipulate that form and re-create it in a musical way” (Zinovieff 2007). Digital signal processing was way beyond the capabilities of the DEC PDP8′s; instead they were used to control a bank of 64 oscillators (actually resonant filters that could be used as sine wave generators) modified for digital control. MUSYS was therefore a hybrid digital-analogue performance controller similar to Max Mathew’s GROOVE System (1970) and  Gabura & Ciamaga’s PIPER system (1965).

Peter Zinovieff at the controls of the PDP8 Computer, EMS studio London

Peter Zinovieff at the controls of the PDP8 Computer, EMS studio London

ems_studio_diagram

EMS studio diagram (from Mark Vail’s ‘ Vintage Synthesizers’)

Even for the wealthy Peter Zinovieff, running EMS privately was phenomenally expensive and he soon found himself running into financial difficulties. The VCS range of synthesisers was launched In 1969 after Zinovieff received little interest when he offered to donate the Studio to the nation (in a letter to ‘The Times’ newspaper). It was decided that the only way EMS could be saved was to create a commercial, miniaturised version of the studio as a modular, affordable synthesiser for the education market. The first version of the synthesiser designed by David Cockerell, was an early prototype called the  Voltage Controlled Studio 1; a two oscillator instrument built into a wooden rack unit – built for the Australian composer Don Banks for £50 after a lengthy pub conversation:

“We made one little box for the Australian composer Don Banks, which we called the VCS1…and we made two of those…it was a thing the size of a shoebox with lots of knobs, oscillators, filter, not voltage controlled. Maybe a ring modulator, and envelope modulator” David Cockerell 2002

vcs-3_0001 The VCS1 was soon followed by a more commercially viable design; The Voltage Controlled Studio 3 (VCS3), with circuitry by David Cockerell, case design by Tistram Cary and with input from Zimovieff . This device was designed as a small, modular, portable but powerful and versatile electronic music studio – rather than electronic instrument – and as such initially came without a standard keyboard attached. The price of the instrument was kept as low as possible – about £330 (1971) – by using cheap army surplus electronic components:

“A lot of the design was dictated by really silly things like what surplus stuff I could buy in Lisle Street [Army-surplus junk shops in Lisle Street, Soho,London]…For instance, those slow motion dials for the oscillator, that was bought on Lisle street, in fact nearly all the components were bought on Lisle street…being an impoverished amateur, I was always conscious of making things cheap. I saw the way Moog did it [referring to Moog's ladder filter] but I adapted that and changed that…he had a ladder based on ground-base transistors and I changed it to using simple diodes…to make it cheaper. transistors were twenty pence and diodes were tuppence!” David Cockerell from ‘Analog Days’

Despite this low budget approach, the success of the VCS3 was due to it’s portability and flexibility. This was the first affordable modular synthesiser that could easily be carried around and used live as a performance instrument. As well as an electronic instrument in it’s own right, the VCS3 could also be used as an effects generator and a signal processor, allowing musicians to manipulate external sounds such as guitars and voice.

VCS3 with DK1 keyboard

VCS3 with DK1 keyboard

The VCS3 was equipped with two audio oscillators of varying frequency, producing sine and sawtooth and square waveforms which could be coloured and shaped by filters, a ring modulator, a low frequency oscillator, a noise generator,  a spring reverb and envelope generators. The device could be controlled by two unique components whose design was dictated by what could be found in Lisle street junk shops; a large two dimensional joystick (from a remote control aircraft kit) and a 16 by 16 pin board allowing the user to patch all the modules without the clutter of patch cables.

The iconic 16 X 16 pin-patch panel of the VCS3

The iconic 16 X 16 pin-patch panel of the VCS3. The 2700 ohm resistors soldered inside the pin vary in tolerance 5% variance and later 1%; the pins have different colours: the ‘red’ pins have 1% tolerance and the ‘white’ have 5% while the ‘green’ pins are attenuating pins having a resistance of 68,000 ohms giving differing results when constructing a patch.

The original design intended as a music box for electronic music composition – in the same vein as Buchla’s Electronic Music Box – was quickly modified with the addition of a standard keyboard that allowed tempered pitch control over the monophonic VCS3. This brought the VCS3 to the attention of rock and pop musicians who either couldn’t afford the huge modular Moog systems (the VCS3 appeared a year before the Minimoog was launched in the USA) or couldn’t find Moog, ARP or Buchla instruments on the British market. Despite it’s reputation as being hopeless as a melodic instrument due to it’s oscillators inherent instability the VCS3 was enthusiastically championed by many british rock acts of the era; Pink Floyd, Brian Eno (who made the external audio processing ability of the instruments part of his signature sound in the early 70′s), Robert Fripp, Hawkwind (the eponymous ‘Silver Machine‘), The Who, Gong and Jean Michel Jarre amongst many others. The VCS3 was used as the basis for a number of other instrument designs by EMS including an ultra-portable A/AK/AKS (1972) ; a VCS3 housed in a plastic carrying case with a built-in analogue sequencer, the Synthi HiFli guitar synthesiser (1973), EMS Spectron Video Synthesiser, Synthi E (a cut-down VCS3 for educational purposes) and AMS Polysynthi as well as several sequencer and vocoder units and the large modular EMS Synthi 100 (1971).

Despite initial success – at one point Robert Moog offered a struggling Moog Music to EMS for $100,000 – The EMS company succumbed to competition from large established international instrument manufacturers who brought out cheaper, more commercial, stable and simpler electronic instruments; the trend in synthesisers has moved away from modular user-patched instruments to simpler, preset performance keyboards. EMS finally closed in 1979 after a long period of decline. The EMS name was sold to Datanomics in Dorset UK and more recently a previous employee Robin Wood, acquired the rights to the EMS name in 1997 and restarted small scale production of the EMS range to the original specifications.

Peter Zinovieff.  Currently working as a librettist and composer of electronic music in Scotland.

David Cockerell, chief designer of the VCS and Synthi range of instruments left EMS in 1972 to join Electro-Harmonix and designed most of their effect pedals. He went to IRCAM, Paris in 1976 for six months, and then returned to Electro-Harmonix . Cockerell  designed the entire Akai sampler range to date, some in collaboration with Chris Huggett (the Wasp & OSCar designer) and Tim Orr.

Tristram Cary , Director of EMS until 1973. Left to become Professor of Electronic Music at the Royal College of Music and later Professor of Music at the University of Adelade. Now retired.

Peter Grogono Main software designer of MUSYS. Left EMS in 1973 but continued working on the MUSYS programming language and further developed it into the Mouse language. Currently Professor at the Department of Computer Science, Concordia University, Canada.

The Synthi 100 at IPEM Studios Netherlands.

The Synthi 100 at IPEM Studios Netherlands.

The EMS Synthi 100

The EMS Synthi 100 was a large and very expensive (£6,500 in 1971)  modular system, fewer than forty units were built and sold. The Synthi 100 was essentially  3 VCS3′s combined; delivering a total of 12 oscillators, two duophonic keyboards giving four note ‘polyphony’ plus a 3 track 256 step digital sequencer. The instrument also came with optional modules including a Vocoder 500 and an interface to connect to a visual interface via a PDP8 computer known as the ‘Computer Synthi’.  

Images of EMS Synthesisers


Documents:

VCS3 Manual (pdf)


Sources:

http://www.till.com/articles/arp/ ‘Analog Days’. T. J PINCH, Frank Trocco. Harvard University Press, 2004

‘Vintage Synthesizers’: Pioneering Designers, Groundbreaking Instruments, Collecting Tips, Mutants of Technology. Mark Vail. March 15th 2000. Backbeat Books

http://www.redbullmusicacademy.com/lectures/dr-peter-zinovieff-the-original-tectonic-sounds?template=RBMA_Lecture%2Ftranscript

http://users.encs.concordia.ca/~grogono

http://www.emssynthesisers.co.uk/

https://jasperpye.wordpress.com/category/synths

Peter Forrest, The A-Z of Analogue Synthesisers Part One A-M, Oct 1998.

The ‘Coupigny Synthesiser’ François Coupigny, France, 1966

Coupigny Synthesisier

Coupigny Synthesisier

During the late 1960′s an intense intellectual animosity developed between the GRM and WDR studios ; The French GRM, lead by Pierre Schaeffer championed a Gallic free ‘Musique Concrete’ approach based on manipulated recordings of everyday sounds contrasting with the Teutonic German WDR’s ‘Electronische Musik’ approach of strict mathematical formalism and tonality (probably a simplistic analysis; read Howard Slater’s much ore insightful essay on the schism). This divergence in theory meant that the studios developed in diverging ways; the Parisian GRM based on manipulation of tape recording and ‘real sound’ and the WDR studio on purely electronically synthesised sound.

 

Part of the Coupigny Synthesiser and EMI mixing desk

Part of the Coupigny Synthesiser and EMI mixing desk

After this rivalry had subsided in the early 1970′s Groupe de Recherches decided to finally integrate electronic synthesis into the studio equipment. The result of this was the  ‘Coupigny synthesiser’ designed and built by engineer François Coupigny around 1966 and was integrated into the 24 track mixing console of Studio 54 at the GRM. Despite this, the synthesiser was designed with ‘Musique Concrete’ principles in mind:

“…a synthesiser with parametrical control was something Pierre Schaeffer was against, since it favoured the preconception of music and therefore deviated from Schaeffer’s principal of ‘making through listening’ . Because of Schaeffer’s concerns, the Coupigny synthesiser was conceived as a sound-event generator with parameters controlled globally, without a means to define values as precisely as some other synthesisers of the day”
(Daniel Teruggi 2007, 219–20).

Pierre Schafer by the console of Studi 54 with the Coupigny Synthesisier

Pierre Schaeffer by the console of Studio 54 adjusting  Moog, the Coupigny Synthesiser is built into the panel directly below.

The Coupigny Synthesiser was a modular system allowing patching of it’s five oscillators using a pin matrix  system (probably the first instrument to use this patching technique, seen later in the EMS designs) to various filters, LFOs (three of them) and a ring modulator. Later versions were expanded using a collection of VCA controlled Moog oscillators and filter modules. The instrument was completely integrated into the studio system allowing it to control remote tape recorders and interface with external equipment. Unlike many other electronic instruments and perhaps due to Schaeffer’s concerns over ‘parametrical control’, the Coupigny Synthesiser had no keyboard – instead it was controlled by a complex envelope generator to modulate the sound. This made the synthesiser less effective at creating precisely defined notes and sequences but better suited to generating continuous tones to be later edited manually on tape. The Coupigny Synthesiser continues to be used at the GRM studio to this day.

The console of Studio 45 at the GRM

The console of Studio 45 at the GRM


Sources:

http://manoafreeuniversity.org/projects/soundings/kompendium/pdfs/slater_heterozygotic.pdf

Gareth Loy ‘Musimathics: The Mathematical Foundations of Music, Volume 2′

‘From magnetic tape to mouse’ by Daniel Teruggi

 

The ‘Beauchamp Synthesiser’ or ‘Harmonic Tone Generator’ James Beauchamp, USA, 1964

Beauchamp Synthesiser or Harmonic Tone Generator at the Experimental Music Studio at the University of Illinois at Urbana-Champaign. USA

Beauchamp Synthesiser or Harmonic Tone Generator at the Experimental Music Studio at the University of Illinois at Urbana-Champaign. USA

James Beauchamp invented the Harmonic Tone Generator in 1964, one of the first additive electronic voltage-controlled synthesisers, under the direction of Lejaren Hiller at the Experimental Music Studio at the University of Illinois at Urbana-Champaign.

“The instrument synthesised six exact harmonics with variable fundamental frequency from 0 to 2000 Hz. The amplitudes of the six harmonics, the fundamental frequency, and the phase of the second harmonic were programmed by voltage control. The fundamental frequency (pitch) was controlled by an external keyboard or generators to provide vibrato and other effects. Control of amplitude was provided by special envelope generators or external generators or even by microphone or prerecorded sounds.

The harmonics were derived by generating pairs of ultrasonic frequencies which were nonlinearly mixed to produce audio difference frequencies. That is to say, one set of frequencies, 50 KHz, 100 KHz, …, 300 KHz, was fixed. Another set, 50-52 KHz, 100-104 KHz, …, 300-312 KHz, was variable. When 50 and 50-52 KHz, etc., was mixed, the sine tones 0-2 KHz, … was derived. Harmonics were generated by full-wave rectification (even harmonics) and square wave chopping (odd harmonics), followed by band pass filtering to separate the harmonics.

The envelope generators consisted of variable delays and attack/decay circuits. In response to a trigger signal from the keyboard, after a programmed delay, the envelope generator would either rise and then go into an immediate decay while the key is depressed or it would rise and decay after the key is depressed. Having the upper harmonics delayed with respect to the lower ones gave an interesting effect.

Because the amplitude controls were “bipolar” (i.e., either positive or negative controls were effective), the instrument could serve as a multi-frequency “ring modulator”, which was especially useful when the controls were derived from a voice or musical instrument. The frequency control was also bipolar and was capable of producing rich sound spectra when the control was taken from a sine generator operating at frequencies ranging from 20 Hz through several hundred Hz. This FM effect was very popular for producing sounds useful in electronic music compositions.”

James Beauchamp. http://ems.music.uiuc.edu/beaucham/htg.html

James Beauchamp working on the  Harmo

James Beauchamp working on the Harmonic Tone Generator c1964

Several electronic music compositions utilised the Harmonic Tone Generator as their main source of electronic sounds. Among them are:

Herbert Brun, “Futility, 1964″

Lejaren Hiller, “Machine Music” and “A Triptych for Hieronymus”

Salvatore Martirano, “Underworld”

Kenneth Gaburo, “Antiphonics III”, “Lemon Drops”, “Hydrogen Jukebox”, and “For Harry”


Sources:

http://ems.music.illinois.edu/ems/articles/battisti.html

Hiller, Lejaren, and James Beauchamps, .Research in Music with Electronics., Science, New Series, Vol. 150, No. 3693 (Oct. 8, 1965): 161-169.

http://ems.music.uiuc.edu/beaucham/index.html

http://ems.music.uiuc.edu/news/spring97/article-bohn.html

 

The ‘Subharchord’, Gerhard Steinke & Ernst Schreiber , Germany (DDR), 1960

subharchord-studio-adlershof

The Subharchord at the Labor für Akustisch-Musikalische Grenzprobleme, Berlin Aldershof DDR in 1960

In the late 1950′s the East German government decided that it needed to develop an ability to produce electronic music for film and TV for ‘Eastern block’ media as well as provide a platform ‘serious’ modern electronic music to compete with the likes of WDR Electronic Music Studio in west Germany. The result of this was the foundation of the first East European electronic music studio under the auspices of the East German National Radio (RFZ) in 1956 (and closed in 1970). The studio was called the “Labor für Akustisch-Musikalische Grenzprobleme” ( laboratory for problems at the border of acoustics/music ) , and in 1960 the ‘Subharchord’ was created as the centrepiece of the Laboratory.

Subharchord

The re-constructed Subharchord

Detail of the Subharchord control panel.

Detail of the Subharchord control panel.

The laboratory was founded in East Berlin in 1956. Gerhard Steinke, a young sound engineer who became its director, was tasked with research and development into stereo-sound and electronic sound generation. Countries all of over Europe were running similar programmes at the time, many of which were visited by Steinke in the years before East Germans were subject to travel restrictions. In 1961, a team headed by Ernst Schreiber, who was latter credited as the inventor of the Subharchord, completed work on the instrument:

While I was working as a sound engineer with the Dresden radio station, I heard of and found numerous tape recordings of Oskar Sala’s compositions for Trautonium, music that I had listened to on the radio while doing my homework, in the programs transmitted by the Weimar and Leipzig stations attached to the Dresden station, and above all in the sound archives. These unusual sounds were often used for the stations’ own programs, and even for advertising. However, what finally set me going was working with the conductor Hermann Scherchen, with whom I made a recording of Bach’s Kunst der Fuge in February 1949 in the Dresden Broadcasting Hall (the former reception hall of the German Hygiene Museum). In conversation with the conductor, it became apparent that Scherchen had long been with the radio and had already worked together with Trautwein, Hindemith and Sala around 1930.

The Düsseldorf Funkausstellung 1953 was the occasion of the first presentation of an electronic organ (Polychord), which was bought by the enthusiastic Berlin chief engineer at the radio station, despite our objections to the lack of transients and our opinion that we could make something much better ourselves. At the same time, the first studio for electronic music had been set up in the Cologne Funkhaus, with a new trautonium by Trautwein, the monochord. In 1955, in the instrument warehouse of the Berlin radio station, I unearthed the surviving parts of a quartet trautonium commissioned by Sala for the station in 1948 and that didn’t really work properly; even Sala’s visit to the laboratory failed to bring life into the instrument. But we were now more than just curious, and announced to Sala that we would develop our own much more modern device … Sala laughed jovially, patted me on the shoulder in commiseration, and went on giving concerts and producing film music with his mixture trautonium.

However, we were able to convince our chief engineer to set up a “Laboratory for problems at the interface of acoustics and music,” and recruited the resourceful television engineer and organ lover Ernst Schreiber. The work on the development began in April 1959. It almost collapsed when the Ministry of Culture objected that subharmonic sounds were a musical fiction since subharmonics did not exist in nature. … However, we were able to prove their existence by dividing saw-tooth sounds into a number of sub-oscillations, and were allowed to start. We were not allowed to develop the organ we had planned, mainly because Dessau had, at my lecture in the Academy of Arts on the presentation of a Polychord electronic organ, complained that such bombastic sounds with such a strong vibrato were more appropriate in a brothel, while the sounds of the trautonium were capable of inspiring the composer’s creativity. However, this wary ministerial representative soon disappeared off to the West, and we cheerfully worked on in the laboratory.

A first subharchord was ready in 1961, and was immediately welcomed with enthusiasm by the composer Addy Kurth from the field of cartoon films and by others in radio and television. We were now able to produce mixture compositions in a laboratory studio, pursue the further development of the instrument and later begin series production. The first marionette cartoon to be accompanied by the subharchord, The Race, was a huge success. We had maintained our contacts with Scherchen over the years and on 9 July 1961, shortly before the unexpected construction of the Berlin Wall, Dessau, who had always supported our development work, Scherchen and I met in the West Berlin Hotel Kempinski to discuss the prototype – although Dessau remained critical of the lack of a second manual, which he had always insisted on.

The development and series production, and the many recordings made at the same time in the laboratory studio, led to the creation of the subharchord II by 1969. Unfortunately, Khrushchev had condemned electronic music as a “cacophony” that was inappropriate to “socialist realism,” which meant that the studio and any further research were abandoned. Nevertheless, a few instruments survived, and two were reconstructed in 2005 and 2007. They are now being used for new creative works.”

Gerhard Steinke “The Creation of the Subharchord – a Recollection ” 2008

Bratislava_Stockhausen_kl

Karlheinz Stockhausen at the Bratislava (CZ) studio using the Subharchord

The Subharchord’s history dates back to  pre-WWII exploration of ‘subharmonic’ synthesis of Dr Freidrich Trautwein’s  Trautonium and Oskar Sala’s Mixturtrautonium. These instruments uniquely used a technique of octave dividing sub-harmonic frequencies to modulate a synthesised tone creating a wide range of complex effects and sounds. Unlike the Trautonium family however, the Subharchord was less focussed on micro-tonal tuning and deployed a standard keyboard manual in stead of a sliding scale wire resistor.

Patent

Schriber’s DDR Patent for the Sunharchord 1960

Like it’s western counterpart, The Trautonium, the Subharchord was used extensively in film soundtracks and TV production throughout the Eastern block during the sixties and seventies; Karl-Ernst Sasse, former conductor of the DEFA (East German Film Company) Symphony Orchestra, worked with the subharchord in Dresden on the soundtracks of cult science fiction classics, such as ‘Signale’ ( a popular eastern block ‘Star Trek’ series). The subharchord was also used for many of the DEFA’s cartoons. Other composition from the studio include Der faule Zauberer (Kurth, 1963); Amarillo Luna (Kubiczek, 1963); Quartet für elektronische Klänge (Wehding, 1963); Variationen (Hohensee, 1965); Zoologischer Garten (Rzewski, 1965)


Sources

www.subharchord.com

Electronic and Experimental Music: Pioneers in Technology and Composition. Thomas B. Holmes, Thom Holmes

www.krautopia.de

http://www.residentadvisor.net/feature.aspx?1771

La musique électroacoustique en République démocratique allemande (RDA) : une avant-garde paradoxale Tatjana Böhme-Mehner July 2012

 

The ‘PIPER’ System James Gabura & Gustav Ciamaga, Canada, 1965

Charles Hamm, Lejaren Hiller, Salvatore Martirano, Herbert Braid, Kenneth  Gaburo at the EMS, Toronto, 1965

Charles Hamm, Lejaren Hiller, Salvatore Martirano, Herbert Braid, James Gaburo at the EMS, Toronto, 1965

PIPER was one of the earliest hybrid performance system allowing composers and musicians to write and edit music in real time using computers and analogue synthesisers. The system was developed by  James Gabura & Gustav Ciamaga Who also collaborated with Hugh Le Caine on the ‘Sonde’) at the University of Toronto (UTEMS) in 1965. With computing technology in 1965 being to weak to synthesise and control sounds in real-time a work-around was to leave the scoring and parameter control to the computer and the audio generation to an external analogue synthesiser. The PIPER system consisted two Moog oscillators and a custom built amplitude regulator to generate the sound and an IBM 6120 to store parameter input and to score the music. The computer would read and store the musicians input; keyboard notes, filter changes, note duration and so-on and allow the user to play this back and edit in real-time.

By the 1980′s such large hybrid analogue-digital performance systems like PIPER and Max Mathew’s GROOVE were obsolete due to the advent of affordable, microcomputers and analogue/digital sequencer technology.

 


Sources

http://www.thecanadianencyclopedia.ca/en/article/gustav-ciamaga-emc/

http://ems.music.illinois.edu/ems/articles/battisti.html

The ‘Insitute For Sonology’ & ‘STEM’ (STudio voor Electronische Muziek), Gottfried Michael Koenig. Netherlands, 1960

The Phillips' Baltan building, Eindhoven NL

The Phillips’ NatLab building, Eindhoven NL

Philips, the Dutch electronics multinational created the Natlab (“Natuurkundig Laboratorium”), Eindhoven, in 1914 as a research facility to develop new concepts -  which allowed them to diversify from their core of carbon-filament lamps into new areas such as amplifiers, radio valves, loudspeakers, televisions, tape recorders and in 1962 audio formats like the audio cassette.

Dick Raaymakers at the Philips NatLab

Dick Raaymakers at the Philips NatLab room 306

In 1956 the ‘Philips Acoustic Instrumentation’ laboratory was created to study potential developments in acoustics and instrumentation. Located at Room 306 in the basement of the Natlab building, the studio became a focus of activity for European experimental composers. The Lab focussed initially on the development of instruments such as electronic drums, a ‘resonance machine’ echo chamber, microphone design, mixers, stereophonics, filters, tape-recorders, synthesisers and oscillators but it soon became apparent that these devices needed to be used within a new musical context – the emerging genre of ‘Electronic Music’.

Bruyn and Edgard varese

Ton Bruynèl and Edgard varese

Philips attracted numerous pioneers of the genre to the laboratory including Edgard Varèse, Tom Dissevelt and Dick Raaijmakers (aka “Kid Baltan”) who was appointed director of the lab in 1964. Philips’ aim being to compose record and release electronic music records which they hoped would become the popular music of the future. The most well know product of this era was Varèse’s groundbreaking “Poème électronique” commissioned for the Le Corbusier designed Philips Pavilion at Expo ’58 in Brussels.

Despite the success of the 1958 Pavilion, Phillips began to realise that the Electronic Music was not going to become the commercial jackpot that they had originally anticipated and stopped supporting the project in 1960. Under Raaijmakers’ guidance the laboratory  renamed itself ‘STEM’ or ‘STudio voor Electronische Muziek’ and moved to a larger complex of studios at the Atlanta building on Plompetorengracht in Utrecht under the patronage of Utrecht University. In this new location STEM had a much more open and less defined direction allowing the community of composers that had gathered around the Philips laboratory to experiment freely without commercial pressure. The STEM studios gradually grew to take over the entire Atlanta building and gained an international reputation as an important production, education and research institute. In 1967 an international course in electronic music was initiated which is still in existence. A year later STEM was renamed the “Institute of Sonology” and In 1986 the Institute of Sonology moved to the Royal Conservatoire in The Hague.

Institue of Sonology at The Atlas building at Plompetorengracht, Utrecht, NL

Institue of Sonology at The Atlas building at Plompetorengracht, Utrecht, NL

During it’s early life, The STEM studio was equipped with a range of custom analogue equipment including: Phillips tape recorders, oscillators, a large filter bank (which could be used to generate harmonics), shapers, EG’s, Ring modulator, Sample&Hold, a matrix patchbay, various tape-loop devices,a plate reverb situated in the garden shed ( damped with a blanket ) and a Function Generator – basically a high speed  Sequencer that could be used to generate waveforns.

G.M. Koenig in the computer studio with PDP-10 Computer

G.M. Koenig in the computer studio with PDP-10 Computer

In 1971 a digital studio was started with the arrival of a DEC PDP-15 Computer. This was  used to develop programs for algorithmic composition and digital sound synthesis. During the early years of the institute a series of landmark programs were developed there, including Koenig’s Project 1, Project 2, and SSP, Paul Berg’s PILE,Werner Kaegi’s MIDIM/VOSIM, and Barry Truax’s POD.

Electronic musicians and composers at STEM

Dick Raaymakers at the Philips NatLab

Dick Raaymakers at the Philips NatLab

Dick Raaijmakers. Born 01-09-1930  in Maastricht. He studied piano at the Royal Conservatory in The Hague. From 1957 to 1960 he joined the Studio for Electronic music at Philips in Eindhoven. Frits Weiland. Born in 1933, enjoyed a technical as well as a musical education. After working for the Dutch radio and television broadcasting system, he worked from 1961 to 1990 for the Institute for Sonology. Ton Bruynèl. (1934-1999) The realisation of ‘Reflexen’ took place at the Institute of Sonology and in the composer’s private studio. Bruynèl has written numerous works for tape and for tape and live instrumentalist. Konrad Bboehmer. Born 24-05-1941 in Berlin. From 1959 to 1961 he studied composition under Gottfried Michael Koenig. In addition, he studied philosophy, sociology and music at the University of Cologne. From 1961 to 1963, he worked in the electronic studio of the Cologne Radio (WDR) where one of his creations was ‘Position’ for tape, voice and orchestra.

Gottfried Michael Koenig

Gottfried Michael Koenig

Gottfried Michael Koenig. Born in 1926 in Magdeburg. He studied church music in Braunschweig and composition in Detmold. From 1954 to 1963 he worked at the famous studio for  electronic studio of the Cologne Radio (WDR) in Cologne. From 1964 to 1984, he was the artistic director of the Institute of Sonology. Koenig is one of the pioneering composers of electronic and computer music of the first generation of post-WW2 composers. Rainer Riehn. Born in Danzig in 1941. In 1960, he studied composition under Johannes Aschenbrenner and then (until 1963) at the Robert-Schumann Conservatory in Dusseldorf. Until 1966 he studied music in Mainz, Zurich and Berlin. In 1965-66, he participated in courses on electronic music in Utrecht under the direction of G. M. Koenig

Images from STEM and the Insitute For Sonology


Sources

http://www.koncon.nl/en/Departments%20%26%20Study%20Programmes/Sonology http://www.sonology.org/NL/SOmain.html http://www.ottolaske.com/ http://www.rolandkuit.com/Interview_english.html http://www.digicult.it/news/baltan-laboratories-back-to-the-future-natlab-the-history-of-electronic-music/ http://www.baltanlaboratories.org/article/report/back-to-the-future:-natlab-&-the-history-of-electronic-music

The Cambridge Companion to Electronic Music. edited by Nick Collins, Julio d’Escrivan

IPEM ‘Institute for Psychoacoustics and Electronic Music’ Ghent, Hubert Vuylsteke & Walter Landrieu, Belgium, 1963

Walter Landrieu at the IPEM studio

Walter Landrieu at the IPEM studio

IPEM electronic music studio founded in 1963 as a joint venture between the Belgian Radio and Television broadcasting company and the University of Ghent with the objective of operating as both a creative studio, and a research institution – IPEM continues to this day to research into audio and psychoacoustics. One of the first instruments developed was a sine wave generator by Hubert Vuylsteke. His assistant, an engineer called Walter Landrieu, invented a vacuum tube based instrument called the ‘Melowriter’ in 1976 that allowed the musician to create sounds through an 8bit code typewriter style interface.

Melowriter designed by Walter Liandreu

Walter Landrieu’s ‘Melowriter’ 

Metaphon Landrieu

Inside the Melowriter

Landrieu's electronic organ (based on a design by Hubert Vuylsteke).

Landrieu’s electronic organ (based on a design by Hubert Vuylsteke).

470 compositions were realised at IPEM between 1963–1987. It is still operational, housed in the University building in the same place it was founded.


Sources

http://www.ipem.ugent.be/

IPEM: Institute For Psychoacoustics And Electronic Music: 50 years of Electronic And Electroacoustic Music At The Ghent University is published by Metaphon, and comes with 2CDs of music made at the studio between 1963 and 1999. More details on the book here.