The ‘Univox’ Les Hills. United Kingdom, 1940

Univox 1940

Univox 1940

Developed by the Jennings Organ Company,West Hill, Dartford (later  Jennings Musical Industries; creators of the Vox range of organs and amplifiers) in the UK, the Univox was a monophonic, portable, piano attachment instrument similar to the Clavioline. It’s sound came from a vacuum-tube sawtooth generator (as opposed to the square wave of the Clavioline) which in turn was modulated by a diode waveform shaper circuit. The pitch range was extended to three octaves (five in later models) using a frequency division technique which also allowed the playing of multiple octaves of the same note from one key. The instrument was controlled by a three octave F to F miniature wooden keyboard and came with it’s own 6 watt amplifier and 8″ speaker all built into a leather carrying case;

“The Clavioline keyboard was on the UK market before the Univox..  Clavioline originated in France and was imported for the British market by the UK/French company “Selmer” (based in Charing Cross road, London). Their main product were woodwind & brass instrument sales. They were not really into electronic products though the Clavioline was a good product. It was also expensive.

Tom Jennings saw the market potential and already had a good slice of the keyboard sales for accordions etc. Tom found a local electronic engineer, Les. Hills, who studied the Clavioline and designed another circuit different to the existing French patent.  Unfortunately the product was not at all reliable, with most units breaking down almost as soon as they got to the end customer. Some of this problem was due to instability in the earlier circuit design but mostly due to choice of suitable components and mechanical shortcomings.

Les had only been employed for the circuit design. The mechanics having been cobbled together by the accordion service men at the time. I was head hunted by Tom to sort out the reliability problems. This took a few months of circuit, component testing plus improvements to the mechanics. This was in 1951 period.

In about 1951/1952 the Univox took off in a big way due to its competitive price and Tom’s country wide marketing program.  The first version was the J6, single keyboard model, later followed by the J10 with two rows of Tone & effect tabs. All models were supplied with metal screw-on clips, to fasten it under the right hand side of a piano. Later we designed an adjustable chromed stand that enabled the user to do gigs in other locations with out having to screw on fixing brackets each time.  Most customers in those days were either Pub owners or pianists playing Pub gigs.

So, No the Clavioline was not the same as the Univox, only catered for the same market.”

Derek Underdown. Technical Director/Chief Engineer at JMI/Vox from  1951-1967

Univox 1940

Univox 1940

The Univox keyboard had a unique a double contact system under the key allowed basic control over the note shape – striking the key harder caused a thyratron impulse generator make a shorter decay, creating a staccato effect, striking the key softly gave a long decay of up to two seconds. A vibrato oscillator was also provided to modulate the output and also to retrigger the thyratron tube to create ‘mandolin’ type repeated notes. The Univox’s front panel consisted of fifteen switches to further control the timbre of the instrument, three vibrato controls, a thryratron modulation control and an overall knee operated volume control.

univox_j10_label

Sources

The ‘Ondioline’ Georges Jenny, France, 1940

George Jenny's 'Ondioline'

Georges Jenny’s ‘Ondioline’

By the late 1930′s with the advent of reliable vacuum tubes and octave divider techniques it became possible to create small, portable electronic instruments that could, despite their size and simplicity, deliver a complex and variable sound. The  Ondioline was part of this new family (which includes the Clavioline, Tuttivox, Univox and others) and was designed as an affordable, versatile piano-attachment that could extend a solo pianists tonal range and repertoire – as such, the Ondioline became hugely successful with pianists, dance bands, light orchestras and cabarets  throughout the 1940′s and 50′s.

The first version of the Ondioline was created by Georges Jenny in 1938 whilst undergoing treatment in a tuberculosis sanatorium. Jenny continued to re-design and build new versions of the instrument at his Paris company “Les Ondes Georges Jenny” (later known as “La Musique Electronique”) until his death in 1976. The instruments were individually built by Jenny himself or supplied in kit form, eventually over a thousand instruments were sold in the USA alone. In an attempt to keep production costs low (Ondiolines originally sold for a mere $400) poor quality components were often used, and after a few years, the instrument became unplayable if not maintained.
ondiolo
The Ondioline was, like many other instruments of the time, a monophonic vacuum-tube instrument, but rather than relying on the heterodyning principle the Ondioline used a single multi-vibrator oscillator which gave the instrument a tone much richer in harmonics. The Ondioline was played using a small eight octave (switch-able through six octaves and tune-able via an octave transposer) touch sensitive keyboard mounted on internal springs that allowed the player to bend the notes using sideways pressure. Via a series of fifteen filters switches It was possible to create complex waveforms and additionally the sound wave could be shaped with the use of a touch wire, effecting the attack with a vertical finger movement or adding glissando or modulation by horizontal movement; this enabled the Ondioline to reproduce a wide range of sounds from soft strings to drum-like percussion. The overall volume of the machine was controlled by a knee lever allowing the player control the overall envelope of the instruments output.
Ondioline4
The Ondioline was marketed in Germany as the “Pianoline” and in The Netherlands as the “Orcheline” and made a notable appearance during the Brussels World Fair (1958) when it was played on top of the Atomium building. A microtonal version of the instrument was built for the composer Jean-Etienne Marie during the sixties consisting of a four octave keyboard which could be tuned to a variety of microtonal systems.

Videos of the Ondioline

 

‘Ondioline’ Book. Georges Jenny  1957


Sources:

G.Jenny: “L’initiation à la lutherie électronique” , Toute La Radio (1955) Jean Jacques Perrey.

The ‘Solovox’, Hammond Organ Co, USA, 1940

Hammond Solovox

Hammond Solovox

The Solovox was designed by engineers Alan Young, John Hanert, Laurens Hammond (speaker cabinet) and George Stephens of the Hammond Organ Co and manufactured in the United States between 1940 and 1948. The Hammond Solovox was a monophonic ‘keyboard attachment’ instrument intended to accompany the piano with organ type lead voices – similar to the Clavioline and Tuttivox. The three octave short keyed keyboard was stored on a sliding mounting under the piano keyboard with a knee operated volume control. The instrument was connected to an electronic sound generation box, amplifier and speaker housing by three thick cables and derived it’s sound from a single LC oscillator with  a one octave frequency range – the signal from which was then passed through a series of 5 frequency dividers to create a further two octaves.

Hammond Solovox

Hammond Solovox

The Solovox (J+K models) used two vibrating metal reeds modulate the oscillator frequency to create a vibrato effect, in later models this was replaced by a second oscillator acting as a vibrato oscillator.On the front of the instrument below the keyboard there were a series of large thumb operated buttons for oscillator range (switchable +/- 3 octaves: ‘soprano’, ‘contralto’,’tenor’ , ‘bass’), vibrato, attack time, ‘deep tone’, ‘full tone’, ’1st voice’, 2nd voice’, ‘brilliant’ and a switch for selecting woodwind, string sound or mute. The Solovox was able to create a range of string, woodwind and organ type sounds and was widely used in light music of its time.

Solovox Production Models

  • Model J (1940–1946)
  • Model K (1946–1948)
  • Model L (1948–1950)

Solovox patent files:

Manuals


Sources:

The ‘Electronic Sackbut’ and the ‘Sonde’. Hugh Le Caine. Canada, 1945

“My primary concern was making an electronic instrument that was musically expressive.”

“My primary concern was making an electronic instrument that was musically expressive.”

Hugh Le Caine the Canadian composer, physicist and inventor was the producer of innovative instruments and technologies including many custom built electronic instruments and pioneering work with multi-track tape recorders, he was also at the forefront of the development of electronic music studios and an early advocate of “user-friendly” approaches to new technologies. Unlike better-known contemporaries such as Robert Moog, LeCaine never saw his major inventions developed directly into complete commercial products, most were one off devices which although were never commercial successes had great influence on the world of electronic music. Among his many creations were the “Electronic Sackbut” and the “Sonde”.

Sackbut

Sackbut

The Sonde was developed by Hugh LeCaine at the University of Toronto in 1945. The instrument was a touch sensitive keyboard voltage-controlled synthesizer with pitch, waveform, and formant controllers. A one-off, custom built for the University of Toronto, Ottowa, The Sonde had 30 fixed frequency oscillators arranged in a 10 X 20 matrix used to create 200 sine waves whose frequencies were spaced at 5hz intervals: from 5-1khz. Each frequency was routed to a key of a touch sensitive polyphonic keyboard.

Josef Tal at the electronic music studio Jerusalem

Josef Tal at the electronic music studio Jerusalem

Hugh Le Caine (May 27, 1914 – July 3, 1977)

Le Caine was brought up in Port Arthur (now Thunder Bay) in northwestern Ontario. After completing his Master of Science degree from Queen’s University in 1939, Le Caine was awarded a National Research Council of Canada (NRC) fellowship to continue his work on atomic physics measuring devices at Queen’s. He worked with the NRC in Ottawa from 1940 to 1974. During World War II, he assisted in the development of the first radar systems.

On an NRC grant he studied nuclear physics from 1948 to 1952 in England. At home he pursued a lifelong interest in electronic music and sound generation. In 1937, Le Caine designed an electronic free reed organ, and in the mid-1940s, he built the Electronic Sackbut, now recognised to be one of the first synthesizers. After the success of public demonstrations of his instruments, he was permitted to move his musical activities to the NRC and to work on them full-time in 1954.

Over the next twenty years, he built over twenty-two different new instruments. Between 1955 and his retirement from the NRC in 1973, Le Caine produced at least fifteen electro acoustical compositions and created a score of new devices and also presented his ideas and inventions to learned bodies and the general public. But while Le Caine did get excellent responses from both the learned bodies and the public, he did not get a satisfactory response from industry. Fortunately, a few people did eventually come into Le Caine’s life to make him feel his efforts were of some value. One of these people was Israeli composer Josef Tal. In the summer of 1958, Tal had travelled to Ottawa under a Unesco grant to visit major electronic music studios. Tal grew very excited about the instruments that Le Caine had built, but he did not realize what this meant to Le Caine until the next day while Le Caine, Tal, and several technicians were having lunch in a small restaurant. Tal noticed that, not only had Le Caine been rather silent on this day, but on close inspection at the table, Le Caine had tears running down his cheeks and falling silently into his soup. When an opportunity arose, Tal delicately asked one of the technicians about this and was told that Le Caine had felt no composer in Canada had a use for his instruments and that Tal was the first composer who had shown any interest in his work.

In 1962 Le Caine arrived in Jerusalem to install his Creative Tape Recorder in the Centre for Electronic Music in Israel, established by Josef Tal.  Le Caine also collaborated in the development of pioneering electronic music studios at the University of Toronto in 1959 and at McGill University in 1964.

 


Sources:

“The Sackbut Blues : Hugh Le Caine, pioneer in electronic music” Young, Gayle, National Museum of Science and Technology, Canada 1989 . ISBN/ISSN :0660120062

http://www.hughlecaine.com

The ‘Tuttivox’ or ‘Bode Clavioline’. Harald Bode, Germany,1946

Tuttivox Orchestra

Tuttivox Orchestra – with a bode Organ in the background

The Tuttivox was essentially a polyphonic German licensed version of Raymond Martin’s Clavioline, manufactured by the Danish company  Jörgensen Electronics, in Düsseldorf, Germany . This updated Clavioline was created by the pioneering German engineer, Harald Bode. The Tuttivox was a small portable one keyboard, amplifier and speaker combination buitl into a wooden carrying case. the keyboard was usually played attached to a piano and intended for use with commercial dance and popular music bands of the day. the instrument created it’s sound using fourtyE- series valves;  thirty six as audio oscillators with filtering provided by coils and capacitors. There are 3 foot positions available and 36 filter settings, which could be combined to enable a variety of tone colors. the Tuttivox remained in production until the 1960s.
abocab_fig08_joergensen
Bode, in collaboration with French instrument maker René Seybold, later developed an extended version of the Clavioline with an extra two octaves on the keyboard called the ‘Concert Clavioline’ and a combination of the Concert Clavioline and the Tuttivox was marketed as the ‘Combichord’ “The smallest church organ in the world”.

Sounds of the Tuttivox/Bode Clavioline

(0:32). An ensemble of claviolines performing dance music with a range of orchestral sounds. From the Jörgensen (Düsseldorf) promotional tape, “6 Claviolines”.

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.


Sources:

Tuttivox Homepage: http://users.informatik.haw-hamburg.de/%7Ewindle_c/TableHooters/instruments.html

http://weltenschule.de/TableHooters/Joergensen_Clavioline.html

‘Hanert Electric Orchestra’ John M Hanert, USA, 1945

The Hanert Synthesiser or ‘Electric Orchestra’ was designed and built by John Hanert c1945 for the Hammond Organ Company and was described as an ‘Apparatus for Automatic Production of Music’. The Synthesiser was an instrument for composition and synthesis of electronic music similar to the later RCA Synthesiser and other coded performance machines. Instead of using punch paper tape like the RCA Synthesiser the Hanert Synthesiser had a moving mechanical scanning head that moved over a sixty foot long table covered in eleven inch by twelve inch paper cards. The paper cards held the characteristics of the sound (pitch, duration, timbre and volume) stored in the form of graphite marks that were ‘read’ by direct electrical contact of the scanning head.The sound generating part of the instrument occupied a whole room and consisted of a bank of vacuum tube oscillators, a random frequency generator (to produce ‘white noise’ characteristics for percussive sounds) and wave shaping circuits. Speeding up and slowing down of the music(accelerando/decelerando) could be controlled by altering the speed and direction of the scanning head.

Hanert’s unique system allowed a great deal of flexibility in composition and synthesis, marks could be added to the cards simply by using a graphite pencil and the cards could be arranged in any order allowing variations and multiple combinations in the composition. Hanert commented:

“The composer ultimately usually has but slight control over the instrumentation employed by the orchestra and it is only after tedious and time consuming steps have been taken and the orchestra has ultimately rendered the composition the composer can actually audition his composition……its is seldom that a recording represents the closeness to perfection which is anticipated by the composer and the conductor…
In the method and apparatus of this invention the composer, arranger or conductor has at his command means for controlling the quality of each note, its intensity, envelope and the degree of accent, duration and tempo without necessarily affecting any other note or tone of the composition. he has under his control, within the limitations imposed by the apparatus as a whole, facilities for producing, under his sole control, any of a substantially infinite variety of renditions of a composition.”

John M Hanert was the chief engineer and designer at Hammond Organ Co from 1934 until his death in 1962.

Sources:

T.L.Rhea:”The Evolution of Electronic Musical Instruments in the United States” (diss., George Peabody College, Nashville, Tenn, 1972)

The ‘Clavioline’ M. Constant Martin, France, 1947

The selmer Clavioline

The Selmer Concert Clavioline

The Clavioline was designed to be a light portable electronic keyboard aimed at pop musicians of the time and became one of the most popular electronic instruments during the fifties. The Clavioline was a monophonic, portable, battery powered keyboard instrument. The first version of the instrument appeared in 1947 and was originally designed by M. Constant. Martin in 1947 at his factory in Versailles, France. The Clavioline consisted of two units: the keyboard with the controllable sound unit and a carrying case box fitted with an with amplifier and speaker. By using an octave transposer switch the single oscillator could be set within a range of five octaves (six in the Bode version). The keyboard unit had 18 switches (22 in the Selmer version) for controlling timbre ( via a high pass filter and a low pass filter ), octave range and attack plus two controls for vibrato speed and intensity. The overall volume was controlled by a knee lever. Martin produced a duophonic model of the Clavioline in 1949 shaped like a small grand piano and featuring a 2 note polyphonic system, the duophonic model never went into production.

The selmer Clavioline

The Selmer Clavioline with stand, amplifier and loudspeaker cabinet

The Clavioline made brass and string sounds which were considered very natural at the time and was widely used throughoput 1950′s and 60′s by pop musicians such as the Beatles, Joe Meek’s ‘the Tornadoes’ (on’Telstar’)and by experimental the jazz musician Sun Ra.

The Clavioline was licensed to various to various global manufacturers such as Selmer (UK) and Gibson (USA). An expanded concert version was produced in 1953 by René Seybold and Harald Bode, marketed by the Jörgensen Electronic Company of Düsseldorf, Germany. In the 1940′s Claviolines were also built into large dance-hall organs by the Belgian company Decap and Mortimer/Van Der Bosch.

Sources:

M.C.Martin: ‘L’apport de l’électronique à l’expression musicale’, Science et vie, ixxviii(1950),161
‘The Electronic Musical Instrument Manual’ A.Douglas. (London/5/1968)152

The ‘Melochord’, Harald Bode, Germany, 1947

Harld Bode's Melochord

Harld Bode’s Melochord of 1947

The Melochord was a post-war  development of  Bodes’ earlier Melodium, which, due to it’s complexity and unorthodox design wasn’t suitable for mass production. After the war, Bode cannibalised parts from the Melodium to build the Melochord, a monophonic keyboard instrument based on vacuum tube technology. The keyboard used pitches derived from the traditional equal-tempered 12 note scale with switches extending the 37 note range from three octaves to seven. A foot pedal allowed overall control of the volume and a novel electronically operated envelope shaper could be triggered for each key.
“…So from 1939 to 1945 I didn’t do anything other than writing a few publications on the field of electronic music. In 1947, when we finally got out of the mess of the post-war period, I created the Melochord. It was originally intended as an instrument which combined melody and chord capability all in one manual, but I then decided to use two voices on this one manual and split up a five-octave keyboard in such a way that the upper three octaves were assigned to one generator and the lower two octaves assigned to another generator. It was designed so that those two portions of the keyboard were independent, so they went to separate tone shaping means and to separate expression pedals, and the voices were arranged to allow for voice crossings. It was used on the German Broadcasting System, especially in Munich. It was not a production instrument (commercial product, that is), it was built and used by myself and was leased out to movie companies and for use in recordings with bands. It was also featured in a band I travelled with (as well as recorded with) in Germany. A second Melochord was commissioned by the Bonn University through Meyer-Eppler, who also initiated the work of Dr. Enkel at the Cologne Electronic Music Studio. This is how the Melochord was commissioned by the Cologne Electronic Music Studio. It was used by Karlheinz Stockhausen thereafter. Also, a Melochord was built for use by the NWDR in Hamburg and for a theatre in Munich, and a few others but it was not a mass production item.”
Interview with Harald Bode, 1980 by SYNE magazine
Later version Melochord

Later version Melochord

A later version incorporated two keyboards the second keyboard being able to control the timbre of the other, a technique used in later modular type synthesizers.The Melochord was used extensively in the early days of the electronic studio at Bonn University by Dr Werner Meyer-Eppler and was later installed at North West German Radio studios in Köln (alongside a Monochord and a simple oscillator and filter system) where it was used by the Elektronische Musik group throughout the 1950′s. Artists who used the Melochord and Monochord at the studio included Herbert Eimert, Robert Beyer, Karel Goeyvarts, György Ligeti, Henri Posseur, Karlheinz Stockhausen and others.

Bode playing the Melochord

Bode playing the Melochord

Despite the instruments technical drawbacks, the Melochord was destined to play a historic role in the future of electronic music, Meyer-Eppler’s visionary and influential work “Klangmodelle” and lectures at Darmstadt New Music School were all based on the Melochord and in 1961 Harald Bode, recognizing the significance of transistor based technology over valve based synthesis, wrote a paper that was to revolutionise electronic musical instruments. Bode’s ideas of modular and miniature self contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others.

Biographical notes

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Harald Bode; October 19, 1909 Hamburg Germany – January 15, 1987 New York USA.

Bode Studied  mathematics, physics and natural philosophy at Hamburg University, graduating in 1934. In 1937, with funding support provided by the composer and band-leader, Christian Warnke, Bode produced his first instrument the ‘Warbo-Formant Orgel’ (‘Warbo’ being a combination of the names Warnke and Bode). Bode moved to Berlin in 1938 to complete a postgraduate course at the Heinrich Hertz Institute where he collaborated with Oskar Vierling and Fekko von Ompteda. During this period Bode developed the ‘Melodium’ ;  a unique monophonic touch-sensitive, multi-timbral instrument used extensively in film scores of the period.

When WWII started in 1939 Bode worked on military submarine sound and wireless communication projects “…We had the only choice in Germany, to go to military service or do work for the government. I praise myself lucky, that I was able to go to the electronic industry” and moved to the  small village Neubeuern in southern Germany, where in 1947 Bode built the first European post-war electronic instrument, the ‘Melochord’. In 1949 Bode joined the AWB company where he created the  ‘Polychord’ a simpler, polyphonic version of the ‘Melochord’ which was followed by the ‘Polychord III’ in 1951 and the  ‘Bode Organ’, a commercial organ which became the prototype for the famous Estey Electronic Organ. After leaving AWB, Bode’s designs included the ‘Tuttivox’, a miniature electronic organ and collaborated on a version of Georges Jenny’s ‘Clavioline’, both big sellers throughout Europe.

In 1954 Bode moved to the USA, settling in Brattleboro, Vermont where he lead the development team (and later, Vice President)  at the Estey Organ Corporation. In 1958, while still working at Estey, Bode set up the Bode Electronics Company where in March 1960 he created another unique instrument; a modular synthesiser “A New Tool for the Exploration of Unknown Electronic Music Instrument Performances” known as the  ‘Audio System Synthesiser’ which Robert Moog used as the basis for his line of new Moog synthesisers.

After the Estey Organ Company foundered in 1960, Bode joined the Wurlitzer Organ Co and moved to Buffalo, New York where he was one of the first engineers to recognise the significance of transistor based technology in electronic music.  Bode’s concepts of modular and miniature self-contained transistor based machines was taken up and developed in the early 1960′s by Robert Moog and Donald Buchla amongst others. 1962 saw the beginning of a long collaboration between Bode and the composer Vladimir Ussachevski at the  Columbia Princeton Center for Electronic Music which lead to the development of innovative studio equipment designs such as the  ‘Bode Ring Modulator’ and ‘Bode Frequency Shifter’. The commercial versions of these inventions were produced  under the Bode Sound Co and under license Moog Synthesisers.

Harald Bode retired in 1974 but continued to pursue his own research. In 1977 he created the ‘Bode Vocoder’ (licensed as the ‘Moog Vocoder’). In 1981 he developed his last instrument, the ‘Bode Barberpole Phaser’.


Sources

Bode’s Melodium and Melochord by Thomas L. Rhea. Contemporary Keyboard magazine (January 1980, p. 68) 

The ‘Monochord’ Dr Freidrich Trautwein. Germany, 1948

 

The Elektronische Monochord at WDR Studio, Köln, 1952

The Elektronische Monochord at NDR Studio, Köln, 1952

The Monochord was commissioned from Dr Freidrich Trautwein, the inventor of the Trautonium, by the Electronic Music studio of North West German Radio studios, Köln to upgrade its synthesis module which consisted at the time of one sine wave generator and filter system. The Monochord was basically a modified concert Trautonium with a monophonic variable pitch interval keyboard controlling a valve based tone generator. The keyboard was pressure sensitive and allowed one hand to play pitched notes while the other changed timbre and variations of the envelope shape. A foot pedal controlled the overall volume output from the machine.

WDR Studio, Köln, 1952

NDR Studio, Köln, 1952


Sources: