The ‘Ether Wave Violin’ or ‘Aetherwellengeige’ Erich Zitzmann-Zirini, Germany 1934

Aetherwellengeige

The ‘Ether Wave Violin’ or Aetherwellengeige shown here in a 1952 Film

The ‘Aetherwellengeige’ was one of many instruments inspired by Leon Termen’s Theremin using the same heterodyning principle and body capacitance to generate a variable tone from two thryatron vacuum tubes (other instruments were the Sonar (1933) , Neo Violena (1927), Electronde (1927), Emicon (1932) and Croix Sonore (1929) amongst others) . This version was built by the amateur electronic engineer and musician Erich Zitzmann-Zirini in Berlin in 1934 after he had witnessed the Berlin Philharmonic Orchestra using Termen’s Theremin in 1927. Zitzmann-Zirini appeared with his instrument in the 1934 Funkaustellung ‘Orchestra of the Future’

"Sounds from the air from the self-made Ether Wave Violin"

Poster “Sounds from the air from the self-made Ether Wave Violin”

Zitzmann-Zirini used his one-off instrument as the centrepiece of his career in vaudeville, circus, radio, and TV shows, he renamed his instrument the ‘musical Sputnik’ after Gagarin’s space flight in the 1960s.


Sources:

André Rusch Frankowski ‘Soundscapes’, pp. 23 (1st edition, Berlin 1990)

The ‘Westinghouse Organ’ R.C.Hitchock. USA, 1930

Hirchcock and the Westinghouse organ 1931

R.C.Hitchcock and the Westinghouse Organ 1931

The Westinghouse Organ was a semi-polyphonic multi vacuum tubed electronic organ designed by R.C.Hitchock for Westinghouse Electric Manufacturing Company in the USA. The organ was played on a three octave keyboard and was designed to produce tones like that of a pipe organ. The organ’s debut was at Pittsburgh’s KDKA radio station in 1930.


Sources

The History of the Organ in the United States. Orpha C. Ochse

Radio News 1931, on ‘The Electrical Future Of Music.’

Electronic and Experimental Music: Technology, Music, and Culture . Thom Holmes

The ‘Hardy-Goldthwaite Organ’ Hardy & Goldthwaite, USA, 1930

The Hardy-Goldthwaite organ was a type of early  analogue sampler, similar to the Welte Licht-Ton Orgel,  using optical discs of photographed sound waves. The discs, created from translations of original instrumental sounds, rotate between a light a slit and a photo-electrical cell generating outputs of various timbres.


Sources:

A History of Sampling (Hugh Davies)

Electronic and Experimental Music: Technology, Music, and Culture. Thom Holmes

The ‘Electrone’ and ‘Melotone’ Leslie Bourn, United Kingdom, 1932

fetch

Since the 1920′s the Compton Organ Co had been the premier manufacturer of pipe organs for cinemas, churches and dance halls in the UK. In 1932 Compton developed their first electronic “pipe-less” organ the ‘Melotone’ intended as an add-on unit for conventional organs to extend their range. The Melotone’s sound was generated using the same tone-wheel technique as the Hammond Organ and the much earlier Telharmonium (1876), where a metal disc engraved with representations of sound waves spun within a magnetic field generating varying voltage tones. In this case two electrostatic tone wheels provided the sounds, amplified and fed to a large speaker horn in the organ loft. The Melotone was not intended as a complete instrument in itself and had it’s own ethereal synthetic character to contrast with a traditional pipe organ.

The Compton Melotone add-on unit

The Compton Melotone add-on unit

In 1938 Compton developed the Melotone concept into a stand-alone organ called the Electrone (or Theatrone) designed as a replacement for old pipe organs in churches and dance halls. This instrument had twelve tone generators and an organ-stop style range of voices. A post-war compact ‘economical’ version was brought out in 1952 also called the ‘Melotone’. Production of the organs continued until the 1960′s by which time tone-generator technology had become obsolete due to the arrival of cheaper and more dependable solid-state electronic circuitry.

One of the twelve tone wheels of the Compton Electrone

One of the twelve tone wheels of the Compton Electrone





Sources:

http://www.electrokinetica.org

 

The ‘Companola’ (‘Kompanola’) and ‘Noisephone’ Igor Simonov, Russia, 1936

The engineer and physicist Igor Simonov was a colleague of Lev Termen at the ‘USSR Sound Recording Institute’, a sound studio laboratory that supplied real-time synthesised sounds for Moscow Radio in the 1930’s. Simonov collaborated with Termen on a number of projects including designs and instructions for home built Theremins but also built several of his own musical devices including a monophonic vacuum tube electronic keyboard instrument called the ‘Companola’ (1936) and the ‘Noisephone’, an electronic device for generating percussive and everyday sound effects – notably, the Noisephone was used to imitate the howling of the wind in the movie “The Forty First” (1957).


Sources:

THE HISTORY OF ELECTRO-MUSICAL INSTRUMENTS IN RUSSIA IN THE FIRST HALF OF THE TWENTIETH CENTURY. Irina Aldoshina, Ekaterina Davidenkova. Saint-Petersburg University of Humanities and Social Sciences, Russia

‘Theremin: Ether Music and Espionage’. Albert Glinsky

The ‘Mixturtrautonium’ Oskar Sala, Germany, 1936

Oskar Sala's mixturtrautonium

Oskar Sala’s mixturtrautonium

Later developments of Freidrich Trautwein’s original  Trautonium were continued by the Trautonium virtuoso and composer Oskar Sala. In 1936, Sala christened his first instrument the ‘Rundfunktrautonium’ (‘Radio-Trautonium’) and also developed a concert version, the “Konzerttrautonium”. After the end of the Second World War the instrument was re-named the ‘Mixturtrautonium’ but all were essentially developments of the original subtractive synthesis principles of the Trautonium.

Mixturtrautonium at the Vienna Technology Museum

Mixturtrautonium at the Vienna Technology Museum, showing two resistant-string manuals and double foot pedals

The essential design principles of the Trautonium were retained by Sala; sound production on the basis of sub-harmonic ‘mixture’, and the method of playing with two string manuals. The latter are made of wire-covered catgut strings which act as variable resistors. according to the position at which they are pressed againts the contact rail beneath them, they control the frequencies of the electronic sound generators. when the finger glides over the string a continuous glissando results over the entire tonal region which has just been tuned up. Micro-tonal intervals could be produced on the Mixturtrautonium. To ensure accurate contact with the notes leather covered sprung and moveable metal tongues are added to each string.  Unlike with a vibrating string, the gradation of the electrical-resistant string manual is linear and not exponential so that all octave have the same finger range.

Sala at the

Sala at the Mixturtrautonium

The 1948 post-war Mixturtrautonium was a polyphonic version of the original Trautonium, generating sound from two AEG Thoraton tubes with a 3 ½ octave range (which could be extended with an octave switch). The instrument could also be controlled with a foot pedal that not only allowed variation in volume but also with a lateral foot movement, select three different sets of sub-harmonics. The Sub-harmonic ‘mixture’ technique basically used un-natural low frequency harmonics to modulate a sawtooth signal creating complex harmonic ‘mixtures’ which could be further coloured with noise generators, mixers, an envelope controller and a frequency shifter.

mixturtrautonium2

Mixturtrautonium

During the pre-war period, the ”Rundfunktrautonium’ was used extensively for film and radio broadcasts and after Paul Hindemith’s endorsement, became the instrument of choice for ‘serious’ electronic music composition (Hindemith’s switching of allegiances from Jörg Mager’s Sphärophon family of instruments to the Trautonium signalled the end  of Mager’s career in instrument design). A portable version, the ‘Konzerttrautonium’ was designed in 1936 specifically for the composer  Harald Genzmer’s ” Conzert für Trautonium und Orchestrer” and saw more than fifty performances before the outbreak of the war.

Berlin had in the early Thirties become the world capital of electronic music, with inventors and designers such as Jörg Mager , Oskar Vierling , Fritz Sennheiser , Bruno Helberger, Harald Bode, Friedrich Trautwein and Oskar Sala (with much of the work centred around the Heinrich-Hertz-Institute). These instruments often explored radical new approaches to tonality and expression and were enthusiastically adopted by the avant-garde of the period. This period of musical ferment coincided with the seizure of power by Adolf Hitler’s National Socialist party (NDSAP), who initially tried to absorb this strain of modernism for their own propaganda ends – indeed, the name ‘Volkstrautonium’ echoes the name ‘Volkswagen’ as a peoples instrument for a modern, new Germany. On the 18th August 1933, Joseph Goebbels (Hitler’s Propaganda Minister) presided over the IFA ‘Internationale Funkausstellung’ (International Radio Exhibition) in Berlin. The music for the exhibition was provided by the ‘Future Orchestra’ (Das Orchester der Zukunft) composed of the most advanced electronic instruments of the time: The Volkstrautonium played by Oskar Sala, Bruno Helberger’s Hellertion, Oskar Vierling’s Elektrochord , the Neo-Bechstein of Walther Nernst, a collection of electric violins and cellos and Leon Termen’s  Theremin.

'Das Orchester der Zukunft' at the Berlin IFA 1933

‘Das Orchester der Zukunft’ at the Berlin IFA 1933

The rise of the Hitler’s National Socialist party presented electronic and avant-garde musicians with a difficult choice; either the hope that by collaborating they would survive and be left alone and be able to continue working or, simply, leave the country. Trautwein, who had joined the NDSAP in the late thirties used his connections:

Luckily Trautwein knew a general who was on our side and arranged that we could play the instrument to the minister of propaganda Joseph Goebels, Hitler’s right hand man. I Played something by Paganini and of course he liked it. After that, they left us in peace.
Oskar Sala

This collaboration resulted in a commission from the Reich’s Radio organisation for several new instruments to be built for a weekly fifteen minute programme “Musik Auf Dem Trautonium” (playing German classical music accompanied by a pianist) and later commissions to use the instrument at large scale NDSAP rallies, outdoor concerts, speeches and, (alongside other electronic instruments such as Vierling’s GrosstonOrgel) the Olympic Games in Berlin in 1936. However, this patronage was short-lived as the Nazi’s asserted their traditional conservatism; Atonal, Experimental and avant-garde music alongside Jazz and other non-German culture was branded ‘entarte’ or ‘degenerate’. Trautwein and Sala’s workshop was denied funding and closed, the Trautonoium was relegated to performing Reich-approved music. Sala spent the war years touring throughout Germany and Axis occupied countries until he was conscripted in 1944 and sent to the Eastern Front

Oskar_Sala_Konzert_Trautonium_Friedrich_Trautwein_Leo_Borchard_Budapest_1942

Oskar Sala playing the Trautonium at a concert with Leo Borchard, Budapest 1942

After the end of the war Sala founded a studio for film music soundtrack production in Berlin,where, amongst many other projects, he recorded music for Hitchcock’s “the birds” .

Oskar Sala and Alfred Hitchcock working on the sound effects for "The Birds"

Oskar Sala and Alfred Hitchcock working on the sound effects for “The Birds”



Music

Oskar Sala – Triostück Paul Hindemith


Sources:

Electronic and Experimental Music: Pioneers in Technology and Composition. Thomas B. Holmes, Thom Holmes

Framing the Fifties: Cinema in a Divided Germany. edited by John Davidson, Sabine Hake

Music and German National Identity. edited by Celia Applegate, Pamela Potter

Peter Badge (2000). Oskar Sala:Pionier der elektronischen Musik. Satzwerk, 100pp. ISBN 3-930333-34-1

http://www.trautoniks.de/

The ‘Oscillon’ William Danforth & William Swann, USA, 1937

Oscillon

Mrs Danforth plays the ‘Oscillon’ 1937

The Oscillon was a one-off vacuum tube instrument created by Dr. W.E. Danforth to play the wind instrument parts for his local amateur Swarthmore Symphony Orchestra. The instrument was played by sliding the finger over the metal box to produce French Horn or Bass Clarinet tones fro  the loudspeaker:

When he is not experimenting on cosmic rays, high-haired Director William Francis Gray Swann of Franklin Institute’s Bartol Research Foundation, plays a cello. Young William Edgar Danforth, his assistant, plays a cello too. Both are mainstays of the Swarthmore (Pa.) Symphony Orchestra, a volunteer organization of about 40 men and women who play good music free. Because nobody in the orchestra can handle a French horn or a bass clarinet, Drs. Swann and Danforth built an electrical “oscillion” so ingenious that it can be made to sound like either, so simple that a child can master it. Last week at a Swarthmore concert the oscillion made its world debut, playing the long clarinet passages in Cesar Franck’s D Minor Symphony without a mishap. Listeners thought the oscillion lacked color, was a little twangier in tone, otherwise indistinguishable from the woodwind it replaced.

The Danforth & Swann oscillion is a simple-looking oblong wooden box with an electrical circuit inside. Current flows through a resistance, is stored up in a condenser, spills into a neon tube, becomes a series of electrical “pulses.” A loud speaker translates the pulses into sound.

To play music the oscillionist presses down on a keyboard and changes the resistance. This alters the frequency, thereby the pitch. As now constructed the oscillion has a range of five octaves which can easily be increased to eight. Inventors Danforth & Swann deplore the oscillion’s higher ranges, expect it will be most useful pinch-hitting for bass clarinet, bassoon, tuba and string bass.”

Courtesy: TIME http://www.time.com 2/4/2008


Sources

Time Magazine http://www.time.com 2/4/2008

Dr. W. E. Danforth, Bartol Research Foundation

Science Service at the Smithsonian Institute

http://www.amphilsoc.org/mole/view?docId=ead/Mss.B.Sw1-ead.xml

http://en.wikipedia.org/wiki/William_Francis_Gray_Swann

The ‘Vibroexponator’ Boris Yankovsky, Russia 1932

Boris yankovsky in 1939

Boris Yankovsky in 1939

Boris Yankovsky (1904-1973) worked with the Multzvuk group as a pupil of Arseney Araamov at Mosfilm, Moscow from 1931-32. However he grew disenchanted with what he considered to be an over simplified way of approaching acoustics. Yankovsky realised that pure uniform  waveforms do not represent timbre and that a more complex spectral approach needed to be developed. In 1932 Yankovsky left Multzvuk to pursue his ideas of spectral analysis, decomposition and re-synthesis . His project was based on his belief that it is possible to develop a universal language of sounds using combinations of hand drawn spectral ‘sound objects’ (similar to the much later cross-synthesis and phase-synthesis techniques).

“I found the idea of synthesis while I was laboriously working on ‘drawn sound’. And this is the chain of my consideration:
The colour of the sound depends on the shape of the sound wave;
Graphical colour of the sound wave could be analysed and represented as the Fourier series of periodic functions (sine waves);

Consequently the sound wave could be re-synthesised back with the same set of sine waves. Nobody did this before the invention of graphical (drawn) sound just because there was not a technical means and  methodology for sound reproduction from such graphical representations of sound. As with electrons (the neutrons and protons) the number of which defines the quality of the atom, so do the sine waves define the quality of the sound – it’s timbre.

Drawn scale with angles to create pitch shift

Drawn scale with angles to create pitch shift

The conclusion: why not initiate a  new science – synthetic acoustics?
It would make sense if we could define (at least in draft) a sort of periodic table of Sound Elements, like Mendeleev’s Periodic Table of Chemical Elements. The system of orchestral tone colours has gaps between the rows that could be filled by a means of synthesis, like the gaps between Mendeleev’s Periodic Table of Chemical Elements have been filled with the latest developments in chemistry [...] It is obvious that the method of selection and crossing of sound and instruments, which is similar to the method of Michurin (Ivan Michurin Russian Biochemist and Horticulturist), will give us unprecedented, novel ‘fruit hybrids’ that are technically unobtainable for a usual orchestra [...]
(Yankovsky 1932-1940; 15,45)

“It is important now to conquer and increase the smoothness of tone colours, flowing rainbows of spectral colours in sound, instead of monotonous colouring of stationary sounding fixed geometric figures [wave shapes], although the nature of these phenomena is not yet clear. The premises leading to the expansion of these phenomena – life inside the sound spectrum – give us the nature of the musical instruments themselves, but “nature is the best mentor” (Leonardo da Vinci) […] The new technology is moving towards the trends of musical renovation, helping us to define new ways for the Art of Music. This new technology is able to help liberate us from the cacophony of the well-tempered scale and related noises. Its name is Electro-Acoustics and it is the basis for Electro-Music and Graphical Sound”.
Yankovsky 1934

To implement these theories yankovsky invented the Vibroexponator; No images or diagrams have survived but the Vibroexponator appears to be a process using a modified rostrum animation stand that allowed the photographed ‘spectral templates’ to be translated into audible sound and then combined into complex sound.

“The Vibroexponator is a complex, bulky tool for optical recording of synthetic sounds to the soundtrack of ordinary 35mm film by means of a specially produced intensive negatives. the instrument is partly mechanised and provides various motions to the original negative. The automation of the direction control is partially broken and requires extra repairs and maintenance, [...] The slide copying tool is intended for production of intensive negatives from films with transversal soundtracks. it too is a massive construction. The gearbox at least a 100-fold safety factor and a great power”

Nikolai Zimmin from the MINI institute describes the Vibroexponator in 1939

Yankovsky spent the next decade working on his spectral theories and building a ‘Syntone Database’ of his spectral templates by recording and analysing hundreds of samples of instruments from Bolshoi Theatre as well as samples of vowels and speech.

Slide copying machine tool diagram

Slide copying machine tool diagram

Political repression in the USSR stopped the funding of Yankovsky’s work until 1939 when he met the young inventor Evgeny Murzin who shared Yankovsky’s vision of a universal synthesis tool (which later emerged as the ANS Synthesiser) . Yankovsky together with Murzin and Yevgeny Sholpo formed the ‘Laboratory for Graphical Sound at the Institute of the Theatre and Film’ where he completed the final version of Vibroexponator. Further development of the instrument and of Yankovsky’s theories of spectral sound was halted by the outbreak of World War Two, Yankovsky never returned to graphical sound.

The Multzvuk group

Multzvuk group was formed in 1930 by Arseney Araazamov to conduct research into graphical sound techniques. The group was based at the Mosfilm Productions Company in Moscow (one of the leading film production companies in Moscow, renamed Gorki Film Studio in 1948) and consisted of composer and theoretician, Arseney Araamov, cameraman and draughtsmen  Nikolai Zhelynsky, animator Nikolai Voinov, painter and amateur acoustician Boris Yankovsky. In 1931 the group moved to ‘NIKFI’,  the ‘cientific Research Institute for Graphic Sound’. Leningrad, and and was renamed the ‘Syntonfilm laboratory’. In 1932 NIKFI stopped funding the group who then moved to Mezhrabpomfilm and finally closed in 1934.

From 1930-34 more than 2000 meters of sound track were produced by the Multzvuk group, including the experimental films ‘Ornamental Animation’, ‘Marusia Otravilas’, ‘Chinese Tune’, ‘Organ Chords’, ‘Untertonikum, Prelude’, ‘Piruet’, ‘Staccato Studies’, ‘Dancing Etude’ and ‘Flute Study’. The Multzvuk archive was kept for many years at Avraamov’s apartment, but destroyed in 1937.


 Sources

Electrified Voices: Medial, Socio-Historical and Cultural Aspects of Voice … edited by Dmitri Zakharine, Nils Meise

Graphical Sound Andrey Smirnov, Moscow, 2011

The ‘Ekvodin’ Andrei Volodin, Russia, 1937

The Ekvodin was a pioneering electronic synthesiser designed by the Russian engineer Andrei Volodin with Kovalski Konstantin and Yevgeny Murzin (later to invent the ANS synthesiser). The first versions of the Ekvodin were home-built experimental models that eventually became successful commercial keyboard instruments, used extensively in Russia throughout the 1940′s until the 1950′s. The Ekvodin won gold medals at the 1958 World Fair in Brussels and the Exhibition of Achievements of the National Economy in Moscow. By the 1970s, Andrei Volodin was teaching musical acoustics and sound synthesis at the Moscow State Conservatory, continuing research and development of the Ekvodin synthesizer and a new polyphonic instrument that was never finished.

Andrei Volodin playing an early model of the Ekvodin

Andrei Volodin playing an early model of the Ekvodin

The instrument was controlled via a six and a half octave, velocity sensitive keyboard which allowed the player to add vibrato by applying sideways movement to the key, plus a foot controlled volume pedal was included to add expression. Sound was generated from vacuum tubes and passed through a number of pre-set filter banks and octave dividers that could be combined to a total of 660 settings. the Ekvodin “was capable of imitating almost any symphony orchestra instrument, including percussion”

Ekvodin Diagram

Ekvodin Diagram

“We give musicians throughout the world a unique opportunity to breathe new life into their emotional art. Ekvodin – a musical instrument that’s perfect for orchestra and ensemble, and solos with piano accompaniment. The keyboard of this instrument is literally capable of singing glamorous melodies to fill every home. Any modern composer is pleasantly surprised when he discovered that Ekvodin is capable of producing a wide range of musical timbres with an extraordinary clarity and purity of sound. Performers, conductors and teachers will be fully satisfied with the outstanding expressive possibilities. Ekvodin opens truly cosmic prospects for every musician. Developed and manufactured in the USSR. ”

Ekvodin Advertising

Ekvodin B9 1950's Model

Ekvodin B9 1950′s Model


Sources

http://www.ruskeys.net

http://cuntroll.ru/articles/article15